{"title":"一种基于关键前缀的字符串相似度搜索过滤算法","authors":"Dong Deng, Guoliang Li, Jianhua Feng","doi":"10.1145/2588555.2593675","DOIUrl":null,"url":null,"abstract":"We study the string similarity search problem with edit-distance constraints, which, given a set of data strings and a query string, finds the similar strings to the query. Existing algorithms use a signature-based framework. They first generate signatures for each string and then prune the dissimilar strings which have no common signatures to the query. However existing methods involve large numbers of signatures and many signatures are unnecessary. Reducing the number of signatures not only increases the pruning power but also decreases the filtering cost. To address this problem, we propose a novel pivotal prefix filter which significantly reduces the number of signatures. We prove the pivotal filter achieves larger pruning power and less filtering cost than state-of-the-art filters. We develop a dynamic programming method to select high-quality pivotal prefix signatures to prune dissimilar strings with non-consecutive errors to the query. We propose an alignment filter that considers the alignments between signatures to prune large numbers of dissimilar pairs with consecutive errors to the query. Experimental results on three real datasets show that our method achieves high performance and outperforms the state-of-the-art methods by an order of magnitude.","PeriodicalId":314442,"journal":{"name":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"A pivotal prefix based filtering algorithm for string similarity search\",\"authors\":\"Dong Deng, Guoliang Li, Jianhua Feng\",\"doi\":\"10.1145/2588555.2593675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the string similarity search problem with edit-distance constraints, which, given a set of data strings and a query string, finds the similar strings to the query. Existing algorithms use a signature-based framework. They first generate signatures for each string and then prune the dissimilar strings which have no common signatures to the query. However existing methods involve large numbers of signatures and many signatures are unnecessary. Reducing the number of signatures not only increases the pruning power but also decreases the filtering cost. To address this problem, we propose a novel pivotal prefix filter which significantly reduces the number of signatures. We prove the pivotal filter achieves larger pruning power and less filtering cost than state-of-the-art filters. We develop a dynamic programming method to select high-quality pivotal prefix signatures to prune dissimilar strings with non-consecutive errors to the query. We propose an alignment filter that considers the alignments between signatures to prune large numbers of dissimilar pairs with consecutive errors to the query. Experimental results on three real datasets show that our method achieves high performance and outperforms the state-of-the-art methods by an order of magnitude.\",\"PeriodicalId\":314442,\"journal\":{\"name\":\"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2588555.2593675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588555.2593675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A pivotal prefix based filtering algorithm for string similarity search
We study the string similarity search problem with edit-distance constraints, which, given a set of data strings and a query string, finds the similar strings to the query. Existing algorithms use a signature-based framework. They first generate signatures for each string and then prune the dissimilar strings which have no common signatures to the query. However existing methods involve large numbers of signatures and many signatures are unnecessary. Reducing the number of signatures not only increases the pruning power but also decreases the filtering cost. To address this problem, we propose a novel pivotal prefix filter which significantly reduces the number of signatures. We prove the pivotal filter achieves larger pruning power and less filtering cost than state-of-the-art filters. We develop a dynamic programming method to select high-quality pivotal prefix signatures to prune dissimilar strings with non-consecutive errors to the query. We propose an alignment filter that considers the alignments between signatures to prune large numbers of dissimilar pairs with consecutive errors to the query. Experimental results on three real datasets show that our method achieves high performance and outperforms the state-of-the-art methods by an order of magnitude.