可重构平台上线性和二次回归的算法体系优化

Samuel López Asunción, M. López-Vallejo, J. Grajal
{"title":"可重构平台上线性和二次回归的算法体系优化","authors":"Samuel López Asunción, M. López-Vallejo, J. Grajal","doi":"10.1109/DCIS51330.2020.9268633","DOIUrl":null,"url":null,"abstract":"Linear and quadratic regressions are techniques widely used in digital signal processing applications. This paper proposes a procedure and hardware architecture for the implementation of both regression methods and their mean square error (MSE) on FPGAs. Efficient computation of the bit widths of the coefficients of the regressions is carried out by finding their maxima and minima. Based on this optimization, a low-latency memory-less implementation for the computation of the MSE is proposed. Additionally, we have implemented the proposed architecture as part of a signal modulation classifier with hard real-time constraints.","PeriodicalId":186963,"journal":{"name":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm-Architecture Optimization for Linear and Quadratic Regression on Reconfigurable Platforms\",\"authors\":\"Samuel López Asunción, M. López-Vallejo, J. Grajal\",\"doi\":\"10.1109/DCIS51330.2020.9268633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear and quadratic regressions are techniques widely used in digital signal processing applications. This paper proposes a procedure and hardware architecture for the implementation of both regression methods and their mean square error (MSE) on FPGAs. Efficient computation of the bit widths of the coefficients of the regressions is carried out by finding their maxima and minima. Based on this optimization, a low-latency memory-less implementation for the computation of the MSE is proposed. Additionally, we have implemented the proposed architecture as part of a signal modulation classifier with hard real-time constraints.\",\"PeriodicalId\":186963,\"journal\":{\"name\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCIS51330.2020.9268633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCIS51330.2020.9268633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性和二次回归是广泛应用于数字信号处理的技术。本文提出了在fpga上实现这两种回归方法及其均方误差(MSE)的程序和硬件结构。通过求回归系数的最大值和最小值,有效地计算了回归系数的位宽度。在此基础上,提出了一种低延迟无内存的MSE计算实现。此外,我们已经将所提出的架构作为具有硬实时约束的信号调制分类器的一部分实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm-Architecture Optimization for Linear and Quadratic Regression on Reconfigurable Platforms
Linear and quadratic regressions are techniques widely used in digital signal processing applications. This paper proposes a procedure and hardware architecture for the implementation of both regression methods and their mean square error (MSE) on FPGAs. Efficient computation of the bit widths of the coefficients of the regressions is carried out by finding their maxima and minima. Based on this optimization, a low-latency memory-less implementation for the computation of the MSE is proposed. Additionally, we have implemented the proposed architecture as part of a signal modulation classifier with hard real-time constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信