为月球任务设计温室子系统:LOOPS - M项目

Riccardo Restivo Alessi, Giulio Metelli, Alessio Bergami, Luca Furlani, Marco Garegnani, Riccardo Pagliarello, Michela Boscia, Michela Piras, Sidhant Kumar, Tommaso Torrini, William Picariello, Damiano Salvitti, Carlo Pirolo, Tommaso Monello, Walter Dragonetti, Stefano Martinelli, Marco Panetti, C. Pozzi, Matteo Gargari, Sofia Torlontano, Paolo Marzioli, L. Gugliermetti, Luca Nardi, Elena Lampazzi, Eugenio Benvenuto, F. Santoni
{"title":"为月球任务设计温室子系统:LOOPS - M项目","authors":"Riccardo Restivo Alessi, Giulio Metelli, Alessio Bergami, Luca Furlani, Marco Garegnani, Riccardo Pagliarello, Michela Boscia, Michela Piras, Sidhant Kumar, Tommaso Torrini, William Picariello, Damiano Salvitti, Carlo Pirolo, Tommaso Monello, Walter Dragonetti, Stefano Martinelli, Marco Panetti, C. Pozzi, Matteo Gargari, Sofia Torlontano, Paolo Marzioli, L. Gugliermetti, Luca Nardi, Elena Lampazzi, Eugenio Benvenuto, F. Santoni","doi":"10.5821/conference-9788419184405.120","DOIUrl":null,"url":null,"abstract":"The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community.","PeriodicalId":340665,"journal":{"name":"4th Symposium on Space Educational Activities","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project\",\"authors\":\"Riccardo Restivo Alessi, Giulio Metelli, Alessio Bergami, Luca Furlani, Marco Garegnani, Riccardo Pagliarello, Michela Boscia, Michela Piras, Sidhant Kumar, Tommaso Torrini, William Picariello, Damiano Salvitti, Carlo Pirolo, Tommaso Monello, Walter Dragonetti, Stefano Martinelli, Marco Panetti, C. Pozzi, Matteo Gargari, Sofia Torlontano, Paolo Marzioli, L. Gugliermetti, Luca Nardi, Elena Lampazzi, Eugenio Benvenuto, F. Santoni\",\"doi\":\"10.5821/conference-9788419184405.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community.\",\"PeriodicalId\":340665,\"journal\":{\"name\":\"4th Symposium on Space Educational Activities\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th Symposium on Space Educational Activities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5821/conference-9788419184405.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th Symposium on Space Educational Activities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5821/conference-9788419184405.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

21世纪20年代是航天领域非常重要的十年,国际合作正朝着探索月球的方向发展,并将导致稳定的月球定居点,这将需要新的、创新的、高效的技术。在这种背景下,来自罗马萨皮恩扎大学的学生创建了loop - m(月球生产和储存微型蔬菜的操作前哨)项目,目的是设计月球温室的一些主要特征。该项目是为IGLUNA 2021活动开发的,该活动是由空间创新协调的跨学科平台,是欧空局实验室@倡议的一部分。loop - m任务在2021年7月进行的虚拟战场战役中成功结束。该项目是V-GELM项目的后续项目,该项目参加了IGLUNA 2020,在虚拟现实中实现了月球温室:模拟与栽培模块HORT3相关的主要操作,该模块已由ENEA(意大利国家新技术、能源和可持续经济发展机构)在HORTSPACE项目中的AMADEE-18任务期间开发。本文简要介绍了月球温室设计开发的主要特点及其在虚拟现实环境下的模拟:自主栽培系统,能够处理原有栽培系统的主要栽培任务;生物转化系统,能够利用昆虫作为生物降解系统,将栽培废弃物回收为新资源;能够承受超高速撞击和月球恶劣环境的屏障。将全面概述所面临的主要挑战,以及团队为获得这些结果所吸取的经验教训。第一个挑战是所有团队成员最初的经验不足,大多数人都是第一次经历空间任务的活动,一开始对项目所需的软件和硬件几乎一无所知,以及如何组织文档和任务,这些都是一年来获得的。另一个困难是loop - m的性质,它包括非常不同的目标,需要不同领域的专门知识,从各种工程部门到生物学和昆虫学。在这一年中,团队设法学会了如何处理所有这些障碍和组织立场,作为一个团队工作,即使由于Covid-19大流行而远程工作。通过仔细的计划,努力的工作和主管的帮助,活动从审查开始,一直到原型阶段和测试活动,在项目的每个方面都取得了成功的结果。到年底,每个参与的人都获得了新的知识,包括实践和理论,并学会了如何向赞助商和科学界展示他们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project
The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信