碳纳米管场效应晶体管10T-SRAM电池的设计与实现

Nagarjuna Reddy Gujjula, Rameshbabu Kellampalli
{"title":"碳纳米管场效应晶体管10T-SRAM电池的设计与实现","authors":"Nagarjuna Reddy Gujjula, Rameshbabu Kellampalli","doi":"10.58599/ijsmem.2023.1105","DOIUrl":null,"url":null,"abstract":"SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.","PeriodicalId":103282,"journal":{"name":"International Journal of Scientific Methods in Engineering and Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of 10T-SRAM cell using Carbon Nano Tube Field Effect Transistor\",\"authors\":\"Nagarjuna Reddy Gujjula, Rameshbabu Kellampalli\",\"doi\":\"10.58599/ijsmem.2023.1105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.\",\"PeriodicalId\":103282,\"journal\":{\"name\":\"International Journal of Scientific Methods in Engineering and Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Methods in Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58599/ijsmem.2023.1105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Methods in Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58599/ijsmem.2023.1105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SRAM是许多VLSI电路中有效存储数据的关键部件。使用传统CMOS、FinFET和gnfet技术实现SRAM的各种研究已经完成。但是,这些方法产生的故障数量多,功耗高,延迟消耗大,为了解决这一问题,提出了用CNTFET分别实现10t SRAM单元。目前有关CNTFET SRAM的研究主要涉及泄漏分析和对偶性特性。CMOS SRAM的故障引入和故障分析受到限制。检测算法和电路在检测纳米级电流方面存在局限性,并且受到CMOS SRAM的限制。这些限制促使我们在这些领域进行研究,带来新颖的想法。并对性能指标进行了评价和实验分析,帮助我们在各种sram之间进行选择。仿真结果表明,与7T SRAM单元相比,10T SRAM单元消耗的延迟和功耗更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation of 10T-SRAM cell using Carbon Nano Tube Field Effect Transistor
SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信