{"title":"碳纳米管场效应晶体管10T-SRAM电池的设计与实现","authors":"Nagarjuna Reddy Gujjula, Rameshbabu Kellampalli","doi":"10.58599/ijsmem.2023.1105","DOIUrl":null,"url":null,"abstract":"SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.","PeriodicalId":103282,"journal":{"name":"International Journal of Scientific Methods in Engineering and Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of 10T-SRAM cell using Carbon Nano Tube Field Effect Transistor\",\"authors\":\"Nagarjuna Reddy Gujjula, Rameshbabu Kellampalli\",\"doi\":\"10.58599/ijsmem.2023.1105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.\",\"PeriodicalId\":103282,\"journal\":{\"name\":\"International Journal of Scientific Methods in Engineering and Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Methods in Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58599/ijsmem.2023.1105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Methods in Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58599/ijsmem.2023.1105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of 10T-SRAM cell using Carbon Nano Tube Field Effect Transistor
SRAM is a key component in many VLSI circuits for efficient storage data. Various researches have been performed on implementation of SRAM using Conventional CMOS, FinFET and GNRFET technologies. But, these methodologies generating the more number of faults with high power and delay consumption, tosolve this problem proposed10T SRAM cell is implemented with the CNTFET respectively. Present research involving CNTFET SRAM deals with leakage analysis and dealt with the dual hilarity characteristics. Fault introduction and analysis of faults were limited with CMOS SRAM. The detection algorithms and circuits possess limitations in terms of detecting the current at nanoscales and restricted with CMOS SRAM. These limitations made us to pursue the research in these areas to bring novel ideas. The performance metrics evaluated and experimental analysis is made and it helps us to choose between various SRAMS. The simulation results shows that the proposed 10T SRAM consumes less delay and power compared to the 7T SRAM cell.