从按需服务到按需服务:一个博弈论方法

Yong Lin, F. Makedon
{"title":"从按需服务到按需服务:一个博弈论方法","authors":"Yong Lin, F. Makedon","doi":"10.1109/ICMLA.2010.12","DOIUrl":null,"url":null,"abstract":"Everyone is familiar with the scenario, people demand or assign tasks to robots, and robots execute the tasks to serve people. We call such a model Serve-on-Demand. With the advancement of pervasive computing, machine learning and artificial intelligence, the robot service of the next generation will inevitably turn to actively and exactly meet people’s needs, even without explicit demand. We call it Serve-on-Need. It requires the robots to comprehend the intentions and preferences of people exactly. In this paper, we model the human-computer interaction for Serve-on-Need as a repeated stochastic Bayesian game. We solve the stochastic Bayesian game by an equilibrium analysis and rational learning. We present the service of a coffee robot to illustrate such an approach.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Serve-on-Demand to Serve-on-Need: A Game Theoretic Approach\",\"authors\":\"Yong Lin, F. Makedon\",\"doi\":\"10.1109/ICMLA.2010.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Everyone is familiar with the scenario, people demand or assign tasks to robots, and robots execute the tasks to serve people. We call such a model Serve-on-Demand. With the advancement of pervasive computing, machine learning and artificial intelligence, the robot service of the next generation will inevitably turn to actively and exactly meet people’s needs, even without explicit demand. We call it Serve-on-Need. It requires the robots to comprehend the intentions and preferences of people exactly. In this paper, we model the human-computer interaction for Serve-on-Need as a repeated stochastic Bayesian game. We solve the stochastic Bayesian game by an equilibrium analysis and rational learning. We present the service of a coffee robot to illustrate such an approach.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每个人都熟悉这样的场景,人们要求或分配任务给机器人,机器人执行任务为人们服务。我们称这种模式为按需服务。随着普适计算、机器学习和人工智能的进步,下一代机器人服务必然会转向主动、准确地满足人们的需求,即使没有明确的需求。我们称之为按需服务。它要求机器人准确地理解人们的意图和偏好。本文将按需服务的人机交互建模为一个重复的随机贝叶斯博弈。我们通过均衡分析和理性学习来求解随机贝叶斯博弈。我们提出了一个咖啡机器人的服务来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Serve-on-Demand to Serve-on-Need: A Game Theoretic Approach
Everyone is familiar with the scenario, people demand or assign tasks to robots, and robots execute the tasks to serve people. We call such a model Serve-on-Demand. With the advancement of pervasive computing, machine learning and artificial intelligence, the robot service of the next generation will inevitably turn to actively and exactly meet people’s needs, even without explicit demand. We call it Serve-on-Need. It requires the robots to comprehend the intentions and preferences of people exactly. In this paper, we model the human-computer interaction for Serve-on-Need as a repeated stochastic Bayesian game. We solve the stochastic Bayesian game by an equilibrium analysis and rational learning. We present the service of a coffee robot to illustrate such an approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信