基于压缩感知的LFM信号分离

I. Orović, S. Stankovic, L. Stanković
{"title":"基于压缩感知的LFM信号分离","authors":"I. Orović, S. Stankovic, L. Stanković","doi":"10.1109/ELMAR.2014.6923364","DOIUrl":null,"url":null,"abstract":"A compressive sensing approach for separation of linear frequency modulated signals from non-stationary disturbance is proposed. The linear time-frequency representation is achieved using the Local Polynomial Fourier Transform (LPFT), which allows revealing data local behavior. Based on the LPFT, the frequency-chirp rate domain is used to achieve sparse signal representation. Then the LPFT is combined with the L-statistics to collect only the time-frequency points belonging to the desired signal, while the points belonging to overlapping regions and disturbance are deemed inappropriate and omitted from observations. The relationship between the measurement and sparsity domain is established in order to use the compressive sensing concept and to completely recover the desired signal. The theory is proven on examples.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Compressive sensing based separation of LFM signals\",\"authors\":\"I. Orović, S. Stankovic, L. Stanković\",\"doi\":\"10.1109/ELMAR.2014.6923364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compressive sensing approach for separation of linear frequency modulated signals from non-stationary disturbance is proposed. The linear time-frequency representation is achieved using the Local Polynomial Fourier Transform (LPFT), which allows revealing data local behavior. Based on the LPFT, the frequency-chirp rate domain is used to achieve sparse signal representation. Then the LPFT is combined with the L-statistics to collect only the time-frequency points belonging to the desired signal, while the points belonging to overlapping regions and disturbance are deemed inappropriate and omitted from observations. The relationship between the measurement and sparsity domain is established in order to use the compressive sensing concept and to completely recover the desired signal. The theory is proven on examples.\",\"PeriodicalId\":424325,\"journal\":{\"name\":\"Proceedings ELMAR-2014\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ELMAR-2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR.2014.6923364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种用于线性调频信号与非平稳干扰分离的压缩感知方法。线性时频表示是使用局部多项式傅里叶变换(LPFT)实现的,它允许揭示数据的局部行为。在此基础上,利用频率啁啾速率域实现了信号的稀疏表示。然后将LPFT与l统计量相结合,只收集属于期望信号的时频点,而属于重叠区域和干扰的点被认为是不合适的,从观测中省略。建立了测量值与稀疏域之间的关系,以便利用压缩感知的概念完全恢复期望的信号。这一理论得到了实例的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive sensing based separation of LFM signals
A compressive sensing approach for separation of linear frequency modulated signals from non-stationary disturbance is proposed. The linear time-frequency representation is achieved using the Local Polynomial Fourier Transform (LPFT), which allows revealing data local behavior. Based on the LPFT, the frequency-chirp rate domain is used to achieve sparse signal representation. Then the LPFT is combined with the L-statistics to collect only the time-frequency points belonging to the desired signal, while the points belonging to overlapping regions and disturbance are deemed inappropriate and omitted from observations. The relationship between the measurement and sparsity domain is established in order to use the compressive sensing concept and to completely recover the desired signal. The theory is proven on examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信