设计拖网综合管理方法,应用神经网络预测模拟

Алексей Олегович Ражев, Александр Алексеевич Недоступ
{"title":"设计拖网综合管理方法,应用神经网络预测模拟","authors":"Алексей Олегович Ражев, Александр Алексеевич Недоступ","doi":"10.46845/1997-3071-2022-67-61-70","DOIUrl":null,"url":null,"abstract":"В статье рассмотрена проблема автоматизации управления траловым ловом с целью повышения его эффективности и уменьшения энергетических и экономических затрат при вылове с использованием технологий искусственного интеллекта и предсказательного моделирования на нейронной сети. Поставлены задачи долгосрочного, среднесрочного и краткосрочного прогнозирования по заданным критериям с использованием архивных данных с промысла и текущих выборок эхолокации. Приведены структура системы, методы наполнения централизованной и локальных баз данных статистики уловов, обучения ис-кусственной нейронной сети, систематизации результатов предсказания, расчета и автоматической генерации входных параметров, конфигурирования. Определены входные параметры нейронной сети, задаваемые пользователем (коды района промысла, трала, объекта лова, его размеры, время года, среднесуточные температура воды и воздуха, скорость ветра, сила волнения в момент предполагаемого лова, тип судна); расчетные значения, вычисляемые по математической модели траловой системы (раскрытие трала, глубина траления) и пользовательским критериям (код места промысла, время суток, скорость траления); выходные характеристики (величина улова, расход топлива, финансовые затраты); критерии отбора и группировки выходной информации. Представлены выборки архивных сведений об уловах. Обосновано применение математической модели для связи силовых и геометрических характеристик трала. Предложены области применения полученных результатов – это проектирование, производство, эксплуатация натурных траловых систем и разработка программно-аппаратных комплексов виртуальной и дополненной реальности. Автоматизация позволит определять оптимальные места промысла с учетом энергетических и экономических затрат, собирать статистику уловов, ускорить, уточнить и упростить ее анализ, генерировать аналитические отчеты.","PeriodicalId":431102,"journal":{"name":"KSTU News","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Разработка методов управления траловым комплексом с применением предсказательного моделирования на нейронной сети\",\"authors\":\"Алексей Олегович Ражев, Александр Алексеевич Недоступ\",\"doi\":\"10.46845/1997-3071-2022-67-61-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В статье рассмотрена проблема автоматизации управления траловым ловом с целью повышения его эффективности и уменьшения энергетических и экономических затрат при вылове с использованием технологий искусственного интеллекта и предсказательного моделирования на нейронной сети. Поставлены задачи долгосрочного, среднесрочного и краткосрочного прогнозирования по заданным критериям с использованием архивных данных с промысла и текущих выборок эхолокации. Приведены структура системы, методы наполнения централизованной и локальных баз данных статистики уловов, обучения ис-кусственной нейронной сети, систематизации результатов предсказания, расчета и автоматической генерации входных параметров, конфигурирования. Определены входные параметры нейронной сети, задаваемые пользователем (коды района промысла, трала, объекта лова, его размеры, время года, среднесуточные температура воды и воздуха, скорость ветра, сила волнения в момент предполагаемого лова, тип судна); расчетные значения, вычисляемые по математической модели траловой системы (раскрытие трала, глубина траления) и пользовательским критериям (код места промысла, время суток, скорость траления); выходные характеристики (величина улова, расход топлива, финансовые затраты); критерии отбора и группировки выходной информации. Представлены выборки архивных сведений об уловах. Обосновано применение математической модели для связи силовых и геометрических характеристик трала. Предложены области применения полученных результатов – это проектирование, производство, эксплуатация натурных траловых систем и разработка программно-аппаратных комплексов виртуальной и дополненной реальности. Автоматизация позволит определять оптимальные места промысла с учетом энергетических и экономических затрат, собирать статистику уловов, ускорить, уточнить и упростить ее анализ, генерировать аналитические отчеты.\",\"PeriodicalId\":431102,\"journal\":{\"name\":\"KSTU News\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSTU News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46845/1997-3071-2022-67-61-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSTU News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46845/1997-3071-2022-67-61-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章讨论了拖网捕鱼自动化的问题,目的是提高渔业管理的效率,降低人工智能技术和神经网络预测建模的能源和经济成本。根据规定的标准,制定了长期、中期和短期预测的目标,利用档案数据和当前回声定位样本。系统结构、方法、集中和地方数据库、知识分子神经网络培训、预测结果系统、计算和自动生成输入参数、配置。用户指定的神经网络输入参数(工程、扫雷、目标、尺寸、季节、平均温度、风速、预计捕获时的动量、船型);根据拖网系统数学模型计算的计算值(扫雷深度、扫雷深度)和用户标准(工程地点代码、昼夜时间、拖网速度);输出特性(捕获量、燃料消耗、财务成本);选择和输出信息组的标准。提供有关捕获的档案资料。数学模型的应用是为了连接tral的力和几何特征。已经提出了应用成果的领域,包括设计、生产、使用自然拖网系统以及开发虚拟和增强现实的软件硬件综合体。自动化将允许根据能源和经济成本来确定渔业的最佳地点,收集渔业统计数据,加快、澄清和简化渔业分析,生成分析报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Разработка методов управления траловым комплексом с применением предсказательного моделирования на нейронной сети
В статье рассмотрена проблема автоматизации управления траловым ловом с целью повышения его эффективности и уменьшения энергетических и экономических затрат при вылове с использованием технологий искусственного интеллекта и предсказательного моделирования на нейронной сети. Поставлены задачи долгосрочного, среднесрочного и краткосрочного прогнозирования по заданным критериям с использованием архивных данных с промысла и текущих выборок эхолокации. Приведены структура системы, методы наполнения централизованной и локальных баз данных статистики уловов, обучения ис-кусственной нейронной сети, систематизации результатов предсказания, расчета и автоматической генерации входных параметров, конфигурирования. Определены входные параметры нейронной сети, задаваемые пользователем (коды района промысла, трала, объекта лова, его размеры, время года, среднесуточные температура воды и воздуха, скорость ветра, сила волнения в момент предполагаемого лова, тип судна); расчетные значения, вычисляемые по математической модели траловой системы (раскрытие трала, глубина траления) и пользовательским критериям (код места промысла, время суток, скорость траления); выходные характеристики (величина улова, расход топлива, финансовые затраты); критерии отбора и группировки выходной информации. Представлены выборки архивных сведений об уловах. Обосновано применение математической модели для связи силовых и геометрических характеристик трала. Предложены области применения полученных результатов – это проектирование, производство, эксплуатация натурных траловых систем и разработка программно-аппаратных комплексов виртуальной и дополненной реальности. Автоматизация позволит определять оптимальные места промысла с учетом энергетических и экономических затрат, собирать статистику уловов, ускорить, уточнить и упростить ее анализ, генерировать аналитические отчеты.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信