基于k -均值分割和Knn分类的骨癌检测

Ranjitha M M, Taranath N L, A. N, C. K. Subbaraya
{"title":"基于k -均值分割和Knn分类的骨癌检测","authors":"Ranjitha M M, Taranath N L, A. N, C. K. Subbaraya","doi":"10.1109/ICAIT47043.2019.8987328","DOIUrl":null,"url":null,"abstract":"From couple of years image processing techniques are extensively utilized for different therapeutic image modalities in which to distinguish infection as in brief period time factor assumes an extremely critical job. The most ideal approach to depict bone malignancy in all stages utilizing image processing. Identifying cancer in the bone is a testing issue because of its complex structure. Here, past analysts have given far reaching survey of bone malignant growth recognition using image processing strategies. A decent research work has been made to the CAD framework behind distinguishing proof of bone malignant growth by images. In this paper we proposed a bone malignant growth identification utilizing k-means segmentation and KNN classifier to recognize the bone disease utilizing image processing strategy for ultra sound images of bones. The proposed outcomes are promising with more exactness up to 98.14% accuracy.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bone Cancer Detection Using K-Means Segmentation and Knn Classification\",\"authors\":\"Ranjitha M M, Taranath N L, A. N, C. K. Subbaraya\",\"doi\":\"10.1109/ICAIT47043.2019.8987328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From couple of years image processing techniques are extensively utilized for different therapeutic image modalities in which to distinguish infection as in brief period time factor assumes an extremely critical job. The most ideal approach to depict bone malignancy in all stages utilizing image processing. Identifying cancer in the bone is a testing issue because of its complex structure. Here, past analysts have given far reaching survey of bone malignant growth recognition using image processing strategies. A decent research work has been made to the CAD framework behind distinguishing proof of bone malignant growth by images. In this paper we proposed a bone malignant growth identification utilizing k-means segmentation and KNN classifier to recognize the bone disease utilizing image processing strategy for ultra sound images of bones. The proposed outcomes are promising with more exactness up to 98.14% accuracy.\",\"PeriodicalId\":221994,\"journal\":{\"name\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT47043.2019.8987328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

近年来,图像处理技术被广泛应用于不同的治疗图像模式,在这些模式中,识别感染的时间因素在短时间内起着至关重要的作用。利用图像处理来描述骨恶性肿瘤的各个阶段是最理想的方法。由于骨骼结构复杂,在骨骼中识别癌症是一个测试问题。在此,过去的分析人员对利用图像处理策略识别骨恶性生长进行了深入的研究。通过图像识别骨恶性生长证据背后的CAD框架已经做了一项体面的研究工作。本文提出了一种基于k均值分割和KNN分类器的骨恶性生长识别方法,利用骨超声图像的图像处理策略对骨疾病进行识别。所提出的结果具有更高的准确度,准确率高达98.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone Cancer Detection Using K-Means Segmentation and Knn Classification
From couple of years image processing techniques are extensively utilized for different therapeutic image modalities in which to distinguish infection as in brief period time factor assumes an extremely critical job. The most ideal approach to depict bone malignancy in all stages utilizing image processing. Identifying cancer in the bone is a testing issue because of its complex structure. Here, past analysts have given far reaching survey of bone malignant growth recognition using image processing strategies. A decent research work has been made to the CAD framework behind distinguishing proof of bone malignant growth by images. In this paper we proposed a bone malignant growth identification utilizing k-means segmentation and KNN classifier to recognize the bone disease utilizing image processing strategy for ultra sound images of bones. The proposed outcomes are promising with more exactness up to 98.14% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信