利用视图合成的鲁棒多帧未来预测

Kenan E. Ak, Ying Sun, Joo-Hwee Lim
{"title":"利用视图合成的鲁棒多帧未来预测","authors":"Kenan E. Ak, Ying Sun, Joo-Hwee Lim","doi":"10.1109/ICIP42928.2021.9506508","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of video prediction, i.e., future frame prediction. Most state-of-the-art techniques focus on synthesizing a single future frame at each step. However, this leads to utilizing the model’s own predicted frames when synthesizing multi-step prediction, resulting in gradual performance degradation due to accumulating errors in pixels. To alleviate this issue, we propose a model that can handle multi-step prediction. Additionally, we employ techniques to leverage from view synthesis for future frame prediction, where both problems are treated independently in the literature. Our proposed method employs multiview camera pose prediction and depth-prediction networks to project the last available frame to desired future frames via differentiable point cloud renderer. For the synthesis of moving objects, we utilize an additional refinement stage. In experiments, we show that the proposed framework outperforms state-of-theart methods in both KITTI and Cityscapes datasets.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Multi-Frame Future Prediction By Leveraging View Synthesis\",\"authors\":\"Kenan E. Ak, Ying Sun, Joo-Hwee Lim\",\"doi\":\"10.1109/ICIP42928.2021.9506508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the problem of video prediction, i.e., future frame prediction. Most state-of-the-art techniques focus on synthesizing a single future frame at each step. However, this leads to utilizing the model’s own predicted frames when synthesizing multi-step prediction, resulting in gradual performance degradation due to accumulating errors in pixels. To alleviate this issue, we propose a model that can handle multi-step prediction. Additionally, we employ techniques to leverage from view synthesis for future frame prediction, where both problems are treated independently in the literature. Our proposed method employs multiview camera pose prediction and depth-prediction networks to project the last available frame to desired future frames via differentiable point cloud renderer. For the synthesis of moving objects, we utilize an additional refinement stage. In experiments, we show that the proposed framework outperforms state-of-theart methods in both KITTI and Cityscapes datasets.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究视频预测问题,即未来帧预测问题。大多数最先进的技术专注于在每一步合成一个单一的未来帧。然而,这导致在合成多步预测时使用模型自己的预测帧,导致由于像素累积误差而导致性能逐渐下降。为了解决这个问题,我们提出了一个可以处理多步预测的模型。此外,我们还利用视图合成技术来预测未来的框架,这两个问题在文献中都是独立处理的。该方法采用多视角相机姿态预测和深度预测网络,通过可微点云渲染器将最后可用帧投影到期望的未来帧。对于运动物体的合成,我们利用了一个额外的细化阶段。在实验中,我们表明所提出的框架在KITTI和cityscape数据集上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Multi-Frame Future Prediction By Leveraging View Synthesis
In this paper, we focus on the problem of video prediction, i.e., future frame prediction. Most state-of-the-art techniques focus on synthesizing a single future frame at each step. However, this leads to utilizing the model’s own predicted frames when synthesizing multi-step prediction, resulting in gradual performance degradation due to accumulating errors in pixels. To alleviate this issue, we propose a model that can handle multi-step prediction. Additionally, we employ techniques to leverage from view synthesis for future frame prediction, where both problems are treated independently in the literature. Our proposed method employs multiview camera pose prediction and depth-prediction networks to project the last available frame to desired future frames via differentiable point cloud renderer. For the synthesis of moving objects, we utilize an additional refinement stage. In experiments, we show that the proposed framework outperforms state-of-theart methods in both KITTI and Cityscapes datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信