柔性机器人鳍的研制与实验评价

Roza Gliva, M. Sfakiotakis, M. Kruusmaa
{"title":"柔性机器人鳍的研制与实验评价","authors":"Roza Gliva, M. Sfakiotakis, M. Kruusmaa","doi":"10.1109/ROBOSOFT.2018.8404921","DOIUrl":null,"url":null,"abstract":"Energy efficiency and motion precision are particularly important for unmanned underwater vehicles (UUVs) undertaking complex missions. To achieve these objectives, researchers consider different materials when designing UUVs. In this work, we present the development and experimental assessment of a bio-inspired flexible actuator, based on the fins used in the Autonomous Underwater Vehicle U-CAT. The novel aspect of the new fin design is that it allows manipulation of the magnitude and direction of the generated thrust vector, by increasing the flexural resistance along its front edge through a rigid insert. The potential for using the fin as a U-CAT actuator is assessed through the comparison of results from parametric studies inside a water tank, run for both the here-proposed and the original design. The results indicate that the modified fin can generate an increased overall force, with a relatively small increase in power consumption. More interestingly, the overall direction of the thrust vector is better aligned with the robot's surge axis, at the expense of reducing the sway motion capability. Overall, the new design holds considerable potential for enhancing the propulsive performance of fin-actuated underwater vehicles, while representing a simple and robust implementation of undulating flexible propulsors.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development and experimental assessment of a flexible robot fin\",\"authors\":\"Roza Gliva, M. Sfakiotakis, M. Kruusmaa\",\"doi\":\"10.1109/ROBOSOFT.2018.8404921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency and motion precision are particularly important for unmanned underwater vehicles (UUVs) undertaking complex missions. To achieve these objectives, researchers consider different materials when designing UUVs. In this work, we present the development and experimental assessment of a bio-inspired flexible actuator, based on the fins used in the Autonomous Underwater Vehicle U-CAT. The novel aspect of the new fin design is that it allows manipulation of the magnitude and direction of the generated thrust vector, by increasing the flexural resistance along its front edge through a rigid insert. The potential for using the fin as a U-CAT actuator is assessed through the comparison of results from parametric studies inside a water tank, run for both the here-proposed and the original design. The results indicate that the modified fin can generate an increased overall force, with a relatively small increase in power consumption. More interestingly, the overall direction of the thrust vector is better aligned with the robot's surge axis, at the expense of reducing the sway motion capability. Overall, the new design holds considerable potential for enhancing the propulsive performance of fin-actuated underwater vehicles, while representing a simple and robust implementation of undulating flexible propulsors.\",\"PeriodicalId\":306255,\"journal\":{\"name\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOSOFT.2018.8404921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

能源效率和运动精度对于执行复杂任务的无人水下航行器(uuv)尤为重要。为了实现这些目标,研究人员在设计uuv时考虑了不同的材料。在这项工作中,我们提出了基于自主水下航行器U-CAT中使用的鳍的仿生柔性致动器的开发和实验评估。新翅片设计的新颖之处在于,它可以通过刚性插入增加沿其前缘的弯曲阻力来操纵产生的推力矢量的大小和方向。通过对水箱内的参数研究结果进行比较,评估了将鳍片用作U-CAT执行器的潜力,并对本文提出的设计和原始设计进行了测试。结果表明,改进后的翅片可以产生更大的整体力,而功耗的增加相对较小。更有趣的是,推力矢量的总体方向更好地与机器人的激波轴对齐,以降低摇摆运动能力为代价。总的来说,新设计在增强鳍驱动水下航行器的推进性能方面具有相当大的潜力,同时代表了波动柔性推进器的简单而稳健的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and experimental assessment of a flexible robot fin
Energy efficiency and motion precision are particularly important for unmanned underwater vehicles (UUVs) undertaking complex missions. To achieve these objectives, researchers consider different materials when designing UUVs. In this work, we present the development and experimental assessment of a bio-inspired flexible actuator, based on the fins used in the Autonomous Underwater Vehicle U-CAT. The novel aspect of the new fin design is that it allows manipulation of the magnitude and direction of the generated thrust vector, by increasing the flexural resistance along its front edge through a rigid insert. The potential for using the fin as a U-CAT actuator is assessed through the comparison of results from parametric studies inside a water tank, run for both the here-proposed and the original design. The results indicate that the modified fin can generate an increased overall force, with a relatively small increase in power consumption. More interestingly, the overall direction of the thrust vector is better aligned with the robot's surge axis, at the expense of reducing the sway motion capability. Overall, the new design holds considerable potential for enhancing the propulsive performance of fin-actuated underwater vehicles, while representing a simple and robust implementation of undulating flexible propulsors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信