一个评估运动分割算法的框架

Christian R. G. Dreher, Nicklas Kulp, Christian Mandery, Mirko Wächter, T. Asfour
{"title":"一个评估运动分割算法的框架","authors":"Christian R. G. Dreher, Nicklas Kulp, Christian Mandery, Mirko Wächter, T. Asfour","doi":"10.1109/HUMANOIDS.2017.8239541","DOIUrl":null,"url":null,"abstract":"There have been many proposals for algorithms segmenting human whole-body motion in the literature. However, the wide range of use cases, datasets, and quality measures that were used for the evaluation render the comparison of algorithms challenging. In this paper, we introduce a framework that puts motion segmentation algorithms on a unified testing ground and provides a possibility to allow comparing them. The testing ground features both a set of quality measures known from the literature and a novel approach tailored to the evaluation of motion segmentation algorithms, termed Integrated Kernel approach. Datasets of motion recordings, provided with a ground truth, are included as well. They are labelled in a new way, which hierarchically organises the ground truth, to cover different use cases that segmentation algorithms can possess. The framework and datasets are publicly available and are intended to represent a service for the community regarding the comparison and evaluation of existing and new motion segmentation algorithms.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A framework for evaluating motion segmentation algorithms\",\"authors\":\"Christian R. G. Dreher, Nicklas Kulp, Christian Mandery, Mirko Wächter, T. Asfour\",\"doi\":\"10.1109/HUMANOIDS.2017.8239541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been many proposals for algorithms segmenting human whole-body motion in the literature. However, the wide range of use cases, datasets, and quality measures that were used for the evaluation render the comparison of algorithms challenging. In this paper, we introduce a framework that puts motion segmentation algorithms on a unified testing ground and provides a possibility to allow comparing them. The testing ground features both a set of quality measures known from the literature and a novel approach tailored to the evaluation of motion segmentation algorithms, termed Integrated Kernel approach. Datasets of motion recordings, provided with a ground truth, are included as well. They are labelled in a new way, which hierarchically organises the ground truth, to cover different use cases that segmentation algorithms can possess. The framework and datasets are publicly available and are intended to represent a service for the community regarding the comparison and evaluation of existing and new motion segmentation algorithms.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8239541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8239541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

文献中已经提出了许多分割人体全身运动的算法。然而,广泛的用例、数据集和用于评估的质量度量使得算法的比较具有挑战性。在本文中,我们引入了一个框架,将运动分割算法放在一个统一的测试平台上,并提供了一种允许比较它们的可能性。测试场地的特点是一套从文献中已知的质量措施和一种专门用于评估运动分割算法的新方法,称为集成核方法。运动记录的数据集,提供了一个基本的事实,也包括在内。它们以一种新的方式被标记,这种方式分层地组织基础事实,以涵盖分割算法可以拥有的不同用例。该框架和数据集是公开的,旨在为社区提供关于现有和新的运动分割算法的比较和评估的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for evaluating motion segmentation algorithms
There have been many proposals for algorithms segmenting human whole-body motion in the literature. However, the wide range of use cases, datasets, and quality measures that were used for the evaluation render the comparison of algorithms challenging. In this paper, we introduce a framework that puts motion segmentation algorithms on a unified testing ground and provides a possibility to allow comparing them. The testing ground features both a set of quality measures known from the literature and a novel approach tailored to the evaluation of motion segmentation algorithms, termed Integrated Kernel approach. Datasets of motion recordings, provided with a ground truth, are included as well. They are labelled in a new way, which hierarchically organises the ground truth, to cover different use cases that segmentation algorithms can possess. The framework and datasets are publicly available and are intended to represent a service for the community regarding the comparison and evaluation of existing and new motion segmentation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信