{"title":"圆动作的Borel定位","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.32","DOIUrl":null,"url":null,"abstract":"This chapter explores Borel localization for a circle action. For a circle action, the Borel localization theorem says that up to torsion, the equivariant cohomology of an S1-manifold is concentrated on its fixed point set and that the isomorphism in localized equivariant cohomology of the manifold and its fixed point set is a ring isomorphism. This is clearly an important result in its own right. Moreover, since the fixed point set is a regular submanifold and is usually simpler than the manifold, the Borel localization theorem sometimes allows one to obtain the ring structure of the equivariant cohomology of an S1-manifold from that of its fixed point set. The chapter demonstrates this method with the example of S1 acting on S2 by rotations.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borel Localization for a Circle Action\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter explores Borel localization for a circle action. For a circle action, the Borel localization theorem says that up to torsion, the equivariant cohomology of an S1-manifold is concentrated on its fixed point set and that the isomorphism in localized equivariant cohomology of the manifold and its fixed point set is a ring isomorphism. This is clearly an important result in its own right. Moreover, since the fixed point set is a regular submanifold and is usually simpler than the manifold, the Borel localization theorem sometimes allows one to obtain the ring structure of the equivariant cohomology of an S1-manifold from that of its fixed point set. The chapter demonstrates this method with the example of S1 acting on S2 by rotations.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter explores Borel localization for a circle action. For a circle action, the Borel localization theorem says that up to torsion, the equivariant cohomology of an S1-manifold is concentrated on its fixed point set and that the isomorphism in localized equivariant cohomology of the manifold and its fixed point set is a ring isomorphism. This is clearly an important result in its own right. Moreover, since the fixed point set is a regular submanifold and is usually simpler than the manifold, the Borel localization theorem sometimes allows one to obtain the ring structure of the equivariant cohomology of an S1-manifold from that of its fixed point set. The chapter demonstrates this method with the example of S1 acting on S2 by rotations.