可视化属性的密度函数和图形可视化中的有效划分

I. Herman, M. S. Marshall, G. Melançon
{"title":"可视化属性的密度函数和图形可视化中的有效划分","authors":"I. Herman, M. S. Marshall, G. Melançon","doi":"10.1109/INFVIS.2000.885090","DOIUrl":null,"url":null,"abstract":"Two tasks in graph visualization require partitioning: the assignment of visual attributes and divisive clustering. Often, we would like to assign a color or other visual attributes to a node or edge that indicates an associated value. In an application involving divisive clustering, we would like to partition the graph into subsets of graph elements based on metric values in such a way that all subsets are evenly populated. Assuming a uniform distribution of metric values during either partitioning or coloring can have undesired effects such as empty clusters or only one level of emphasis for the entire graph. Probability density functions derived from statistics about a metric can help systems succeed at these tasks.","PeriodicalId":399031,"journal":{"name":"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Density functions for visual attributes and effective partitioning in graph visualization\",\"authors\":\"I. Herman, M. S. Marshall, G. Melançon\",\"doi\":\"10.1109/INFVIS.2000.885090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two tasks in graph visualization require partitioning: the assignment of visual attributes and divisive clustering. Often, we would like to assign a color or other visual attributes to a node or edge that indicates an associated value. In an application involving divisive clustering, we would like to partition the graph into subsets of graph elements based on metric values in such a way that all subsets are evenly populated. Assuming a uniform distribution of metric values during either partitioning or coloring can have undesired effects such as empty clusters or only one level of emphasis for the entire graph. Probability density functions derived from statistics about a metric can help systems succeed at these tasks.\",\"PeriodicalId\":399031,\"journal\":{\"name\":\"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.2000.885090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2000.885090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

图可视化中的两个任务需要划分:视觉属性的分配和分裂聚类。通常,我们希望为节点或边缘指定颜色或其他视觉属性,以指示相关值。在涉及分裂聚类的应用程序中,我们希望根据度量值将图划分为图元素的子集,这样所有子集都是均匀填充的。在划分或着色期间假设度量值的均匀分布可能会产生不希望的效果,例如空簇或整个图只有一个强调级别。从度量的统计数据中导出的概率密度函数可以帮助系统成功完成这些任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density functions for visual attributes and effective partitioning in graph visualization
Two tasks in graph visualization require partitioning: the assignment of visual attributes and divisive clustering. Often, we would like to assign a color or other visual attributes to a node or edge that indicates an associated value. In an application involving divisive clustering, we would like to partition the graph into subsets of graph elements based on metric values in such a way that all subsets are evenly populated. Assuming a uniform distribution of metric values during either partitioning or coloring can have undesired effects such as empty clusters or only one level of emphasis for the entire graph. Probability density functions derived from statistics about a metric can help systems succeed at these tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信