{"title":"准齐次正仿射sl2型的正则模","authors":"D. Panyushev","doi":"10.1070/SM1992V073N02ABEH002563","DOIUrl":null,"url":null,"abstract":"For the varieties mentioned in the title a description is given for the canonical divisor, the Picard group, and the divisor class group. In particular, it follows from this that the singular 3-dimensional quasihomogeneous SL2-varieties are not Gorenstein. The canonical module is described. All descriptions are given in terms of discrete parameters: the height and the degree of a quasihomogeneous affine SL2-variety.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"THE CANONICAL MODULE OF A QUASIHOMOGENEOUS NORMAL AFFINE SL2-VARIETY\",\"authors\":\"D. Panyushev\",\"doi\":\"10.1070/SM1992V073N02ABEH002563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the varieties mentioned in the title a description is given for the canonical divisor, the Picard group, and the divisor class group. In particular, it follows from this that the singular 3-dimensional quasihomogeneous SL2-varieties are not Gorenstein. The canonical module is described. All descriptions are given in terms of discrete parameters: the height and the degree of a quasihomogeneous affine SL2-variety.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1992V073N02ABEH002563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V073N02ABEH002563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE CANONICAL MODULE OF A QUASIHOMOGENEOUS NORMAL AFFINE SL2-VARIETY
For the varieties mentioned in the title a description is given for the canonical divisor, the Picard group, and the divisor class group. In particular, it follows from this that the singular 3-dimensional quasihomogeneous SL2-varieties are not Gorenstein. The canonical module is described. All descriptions are given in terms of discrete parameters: the height and the degree of a quasihomogeneous affine SL2-variety.