超参数调整随机森林回归估计PM2.5浓度

Deepak Gaur, D. Mehrotra, Karan Singh
{"title":"超参数调整随机森林回归估计PM2.5浓度","authors":"Deepak Gaur, D. Mehrotra, Karan Singh","doi":"10.1109/Confluence52989.2022.9734205","DOIUrl":null,"url":null,"abstract":"In recent years, study of particulate matter become an important public health concern. Small particals PM2.5, which have diameter less than 2.5 micro meter impacts on lung diseases and respiratory system of human. A number of various computational techniques are there to estimate the concentration of these particles present in the atmosphere. In this paper, Random Forest Regressor (RFR) is proposed to estimate the concentration of PM2.5 particles. Model is trained on 11 different features i.e. annual average temperature (T), maximum temperature (MT), minimum temperature (mT), rain precipitation (RP), average wind speed (WS), total rainy days (RD), total snowy days (SD), total stormy days (StD), total foggy days (FD), total tornado days (TD), total haily days (HD). Data is collected through web scrapping for the Bangalore city, India from year 2013 to 2020. Model performance obtained was R2=0.9732, MAE=3.87μg/m3, and RMSE=2.84μg/m3. Simulated result showed higher accuracy over other existing techniques.","PeriodicalId":261941,"journal":{"name":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Particulate Matter PM2.5 Concentration using Random Forest Regressor with Hyperparameter Tuning\",\"authors\":\"Deepak Gaur, D. Mehrotra, Karan Singh\",\"doi\":\"10.1109/Confluence52989.2022.9734205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, study of particulate matter become an important public health concern. Small particals PM2.5, which have diameter less than 2.5 micro meter impacts on lung diseases and respiratory system of human. A number of various computational techniques are there to estimate the concentration of these particles present in the atmosphere. In this paper, Random Forest Regressor (RFR) is proposed to estimate the concentration of PM2.5 particles. Model is trained on 11 different features i.e. annual average temperature (T), maximum temperature (MT), minimum temperature (mT), rain precipitation (RP), average wind speed (WS), total rainy days (RD), total snowy days (SD), total stormy days (StD), total foggy days (FD), total tornado days (TD), total haily days (HD). Data is collected through web scrapping for the Bangalore city, India from year 2013 to 2020. Model performance obtained was R2=0.9732, MAE=3.87μg/m3, and RMSE=2.84μg/m3. Simulated result showed higher accuracy over other existing techniques.\",\"PeriodicalId\":261941,\"journal\":{\"name\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Confluence52989.2022.9734205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Confluence52989.2022.9734205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对颗粒物的研究已成为一个重要的公共卫生问题。直径小于2.5微米的小颗粒PM2.5对人体肺部疾病和呼吸系统有影响。有许多不同的计算技术可以估计大气中这些粒子的浓度。本文提出用随机森林回归(RFR)估计PM2.5颗粒浓度。模型根据11个不同的特征进行训练,即年平均气温(T)、最高气温(MT)、最低气温(MT)、降雨量(RP)、平均风速(WS)、总阴雨天(RD)、总雪天(SD)、总暴风雨日数(StD)、总雾天(FD)、总龙卷风日数(TD)、总冰雹日数(HD)。数据收集通过网络抓取2013年至2020年的印度班加罗尔市。得到的模型性能R2=0.9732, MAE=3.87μg/m3, RMSE=2.84μg/m3。仿真结果表明,与其他现有技术相比,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Particulate Matter PM2.5 Concentration using Random Forest Regressor with Hyperparameter Tuning
In recent years, study of particulate matter become an important public health concern. Small particals PM2.5, which have diameter less than 2.5 micro meter impacts on lung diseases and respiratory system of human. A number of various computational techniques are there to estimate the concentration of these particles present in the atmosphere. In this paper, Random Forest Regressor (RFR) is proposed to estimate the concentration of PM2.5 particles. Model is trained on 11 different features i.e. annual average temperature (T), maximum temperature (MT), minimum temperature (mT), rain precipitation (RP), average wind speed (WS), total rainy days (RD), total snowy days (SD), total stormy days (StD), total foggy days (FD), total tornado days (TD), total haily days (HD). Data is collected through web scrapping for the Bangalore city, India from year 2013 to 2020. Model performance obtained was R2=0.9732, MAE=3.87μg/m3, and RMSE=2.84μg/m3. Simulated result showed higher accuracy over other existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信