社交媒体对话的趋势分析使用艾达基于主题的模式算法

A. Syaifuddin, R. Harianto, Joan Santoso
{"title":"社交媒体对话的趋势分析使用艾达基于主题的模式算法","authors":"A. Syaifuddin, R. Harianto, Joan Santoso","doi":"10.52985/INSYST.V2I1.150","DOIUrl":null,"url":null,"abstract":"Aplikasi WhatsApp merupakan salah satu aplikasi chatting yang sangat populer terutama di Indonesia. WhatsApp mempunyai data unik karena memiliki pola pesan dan topik yang beragam dan sangat cepat berubah, sehingga untuk mengidentifikasi suatu topik dari kumpulan pesan tersebut sangat sulit dan menghabiskan banyak waktu jika dilakukan secara manual. Salah satu cara untuk mendapatkan informasi tersirat dari media sosial tersebut yaitu dengan melakukan pemodelan topik. Penelitian ini dilakukan untuk menganalisis penerapan metode LDA (Latent Dirichlet Allocation) dalam mengidentifikasi topik apa saja yang sedang dibahas pada grup WhatsApp di Universitas Islam Majapahit serta melakukan eksperimen pemodelan topik dengan menambahkan atribut waktu dalam penyusunan dokumen. Penelitian ini menghasilkan model topic dan nilai evaluasi f-measure dari model topik berdasarkan uji coba yang dilakukan. Metode LDA dipilih untuk melakukan pemodelan topik dengan memanfaatkan library LDA pada python serta menerapkan standar text-preprocessing dan menambahkan slang words removal untuk menangani kata tidak baku dan singkatan pada chat logs. Pengujian model topik dilakukan dengan uji human in the loop menggunakan word instrusion task kepada pakar Bahasa Indonesia. Hasil evaluasi LDA didapatkan hasil percobaan terbaik dengan mengubah dokumen menjadi 10 menit dan menggabungkan dengan reply chat pada percakapan grup WhatsApp merupakan salah satu cara dalam meningkatkan hasil pemodelan topik menggunakan algoritma Latent Dirichlet Allocation (LDA), didapatkan nilai precision sebesar 0.9294, nilai recall sebesar 0.7900 dan nilai f-measure sebesar 0.8541.","PeriodicalId":183705,"journal":{"name":"Journal of Intelligent System and Computation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA\",\"authors\":\"A. Syaifuddin, R. Harianto, Joan Santoso\",\"doi\":\"10.52985/INSYST.V2I1.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aplikasi WhatsApp merupakan salah satu aplikasi chatting yang sangat populer terutama di Indonesia. WhatsApp mempunyai data unik karena memiliki pola pesan dan topik yang beragam dan sangat cepat berubah, sehingga untuk mengidentifikasi suatu topik dari kumpulan pesan tersebut sangat sulit dan menghabiskan banyak waktu jika dilakukan secara manual. Salah satu cara untuk mendapatkan informasi tersirat dari media sosial tersebut yaitu dengan melakukan pemodelan topik. Penelitian ini dilakukan untuk menganalisis penerapan metode LDA (Latent Dirichlet Allocation) dalam mengidentifikasi topik apa saja yang sedang dibahas pada grup WhatsApp di Universitas Islam Majapahit serta melakukan eksperimen pemodelan topik dengan menambahkan atribut waktu dalam penyusunan dokumen. Penelitian ini menghasilkan model topic dan nilai evaluasi f-measure dari model topik berdasarkan uji coba yang dilakukan. Metode LDA dipilih untuk melakukan pemodelan topik dengan memanfaatkan library LDA pada python serta menerapkan standar text-preprocessing dan menambahkan slang words removal untuk menangani kata tidak baku dan singkatan pada chat logs. Pengujian model topik dilakukan dengan uji human in the loop menggunakan word instrusion task kepada pakar Bahasa Indonesia. Hasil evaluasi LDA didapatkan hasil percobaan terbaik dengan mengubah dokumen menjadi 10 menit dan menggabungkan dengan reply chat pada percakapan grup WhatsApp merupakan salah satu cara dalam meningkatkan hasil pemodelan topik menggunakan algoritma Latent Dirichlet Allocation (LDA), didapatkan nilai precision sebesar 0.9294, nilai recall sebesar 0.7900 dan nilai f-measure sebesar 0.8541.\",\"PeriodicalId\":183705,\"journal\":{\"name\":\"Journal of Intelligent System and Computation\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent System and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52985/INSYST.V2I1.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent System and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52985/INSYST.V2I1.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

WhatsApp应用程序是最受欢迎的聊天应用之一,尤其是在印尼。WhatsApp拥有独特的数据,因为它拥有多种多样、变化迅速的信息模式和主题,因此从这些信息中识别主题是困难的,需要大量的时间来手动完成。从社交媒体中获得隐含信息的一种方法是对主题进行建模。这项研究是为了分析LDA的方法(layam Dirichlet Allocation)的应用,确定伊斯兰马贾帕希特大学WhatsApp群中正在讨论的主题,并通过在文件编制中增加时间属性来进行主题建模实验。本研究基于测试对象对象对象的主题模型和f-measure评价价值。LDA的方法被选中来执行主题建模,方法是利用LDA的图书馆在python上使用python,并应用text prepresing标准,并添加一个俚语动词removal,在聊天圈中处理生成词和缩写。模型主题测试是通过人类在循环测试中使用单词指导任务对印尼语专家进行的。LDA得到了最好的实验结果评估结果文件变成10分钟并结合的聊天回复在WhatsApp群组对话是一种提高主题使用Latent算法建模结果Dirichlet Allocation (LDA),获得高级大价值。9294,价值召回共计0 8541 f-measure 0万7900和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA
Aplikasi WhatsApp merupakan salah satu aplikasi chatting yang sangat populer terutama di Indonesia. WhatsApp mempunyai data unik karena memiliki pola pesan dan topik yang beragam dan sangat cepat berubah, sehingga untuk mengidentifikasi suatu topik dari kumpulan pesan tersebut sangat sulit dan menghabiskan banyak waktu jika dilakukan secara manual. Salah satu cara untuk mendapatkan informasi tersirat dari media sosial tersebut yaitu dengan melakukan pemodelan topik. Penelitian ini dilakukan untuk menganalisis penerapan metode LDA (Latent Dirichlet Allocation) dalam mengidentifikasi topik apa saja yang sedang dibahas pada grup WhatsApp di Universitas Islam Majapahit serta melakukan eksperimen pemodelan topik dengan menambahkan atribut waktu dalam penyusunan dokumen. Penelitian ini menghasilkan model topic dan nilai evaluasi f-measure dari model topik berdasarkan uji coba yang dilakukan. Metode LDA dipilih untuk melakukan pemodelan topik dengan memanfaatkan library LDA pada python serta menerapkan standar text-preprocessing dan menambahkan slang words removal untuk menangani kata tidak baku dan singkatan pada chat logs. Pengujian model topik dilakukan dengan uji human in the loop menggunakan word instrusion task kepada pakar Bahasa Indonesia. Hasil evaluasi LDA didapatkan hasil percobaan terbaik dengan mengubah dokumen menjadi 10 menit dan menggabungkan dengan reply chat pada percakapan grup WhatsApp merupakan salah satu cara dalam meningkatkan hasil pemodelan topik menggunakan algoritma Latent Dirichlet Allocation (LDA), didapatkan nilai precision sebesar 0.9294, nilai recall sebesar 0.7900 dan nilai f-measure sebesar 0.8541.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信