提高了口语评估的自动评分信心

Marco Del Vecchio, A. Malinin, M. Gales
{"title":"提高了口语评估的自动评分信心","authors":"Marco Del Vecchio, A. Malinin, M. Gales","doi":"10.1109/SLT.2018.8639634","DOIUrl":null,"url":null,"abstract":"Automatic assessment of spoken language proficiency is a sought-after technology. These systems often need to handle the operating scenario where candidates have a skill level or first language which was not encountered during the training stage. For high stakes tests it is necessary for those systems to have good grading performance when the candidate is from the same population as those contained in the training set, and they should know when they are likely to perform badly in the case when the candidate is not from the same population as the ones contained in training set. This paper focuses on using Deep Density Networks to yield auto-marking confidence. Firstly, we explore the benefits of parametrising either a predictive distribution or a posterior distribution over the parameters of the model likelihood and obtaining the predictive distribution via marginalisation. Secondly, we investigate how it is possible to act on the parametrised density in order to explicitly teach the model to have low confidence in areas of the observation space where there is no training data by assigning confidence scores to artificially generated data. Lastly, we compare the capabilities of Factor Analysis, Variational Auto-Encodes, and Wasserstein Generative Adversarial Networks to generate artificial data.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Auto-Marking Confidence for Spoken Language Assessment\",\"authors\":\"Marco Del Vecchio, A. Malinin, M. Gales\",\"doi\":\"10.1109/SLT.2018.8639634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic assessment of spoken language proficiency is a sought-after technology. These systems often need to handle the operating scenario where candidates have a skill level or first language which was not encountered during the training stage. For high stakes tests it is necessary for those systems to have good grading performance when the candidate is from the same population as those contained in the training set, and they should know when they are likely to perform badly in the case when the candidate is not from the same population as the ones contained in training set. This paper focuses on using Deep Density Networks to yield auto-marking confidence. Firstly, we explore the benefits of parametrising either a predictive distribution or a posterior distribution over the parameters of the model likelihood and obtaining the predictive distribution via marginalisation. Secondly, we investigate how it is possible to act on the parametrised density in order to explicitly teach the model to have low confidence in areas of the observation space where there is no training data by assigning confidence scores to artificially generated data. Lastly, we compare the capabilities of Factor Analysis, Variational Auto-Encodes, and Wasserstein Generative Adversarial Networks to generate artificial data.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对口语能力的自动评估是一项很受欢迎的技术。这些系统通常需要处理候选人的技能水平或第一语言在培训阶段没有遇到的操作场景。对于高风险测试,当候选人与训练集中的人来自相同的群体时,这些系统有必要具有良好的评分性能,并且他们应该知道当候选人与训练集中的人来自不同的群体时,他们可能表现不佳。本文的重点是使用深度密度网络来产生自动标记置信度。首先,我们探讨了参数化预测分布或后验分布对模型似然参数的好处,并通过边缘化获得预测分布。其次,我们研究了如何可能对参数化密度起作用,以便通过为人工生成的数据分配置信度分数来明确地教导模型在没有训练数据的观测空间区域具有低置信度。最后,我们比较了因子分析、变分自动编码和沃瑟斯坦生成对抗网络生成人工数据的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Auto-Marking Confidence for Spoken Language Assessment
Automatic assessment of spoken language proficiency is a sought-after technology. These systems often need to handle the operating scenario where candidates have a skill level or first language which was not encountered during the training stage. For high stakes tests it is necessary for those systems to have good grading performance when the candidate is from the same population as those contained in the training set, and they should know when they are likely to perform badly in the case when the candidate is not from the same population as the ones contained in training set. This paper focuses on using Deep Density Networks to yield auto-marking confidence. Firstly, we explore the benefits of parametrising either a predictive distribution or a posterior distribution over the parameters of the model likelihood and obtaining the predictive distribution via marginalisation. Secondly, we investigate how it is possible to act on the parametrised density in order to explicitly teach the model to have low confidence in areas of the observation space where there is no training data by assigning confidence scores to artificially generated data. Lastly, we compare the capabilities of Factor Analysis, Variational Auto-Encodes, and Wasserstein Generative Adversarial Networks to generate artificial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信