求解分数阶微分方程cauchy型问题的人工神经网络方法

N. Duc, A. Galimyanov, I. Z. Akhmetov
{"title":"求解分数阶微分方程cauchy型问题的人工神经网络方法","authors":"N. Duc, A. Galimyanov, I. Z. Akhmetov","doi":"10.1109/SmartIndustryCon57312.2023.10110823","DOIUrl":null,"url":null,"abstract":"Differential equations with Cauchy type initial conditions and boundary conditions play a very important role in mathematics, physics and other sciences. In this article, we have developed an artificial neural network (ANN) method for finding solutions to the Cauchy problem for fractional order differential equations (FODEs). The fractional derivative is considered to be of the Riemann-Liouville type. Here, we used a three-layer feedforward neural architecture (one input layer, one hidden layer and one output layer), L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization method to minimize the error function and change the parameters (weights and biases). Illustrative examples demonstrating the accuracy and efficiency of this method are given. Compare the results of the current method with the mathematical results.","PeriodicalId":157877,"journal":{"name":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network Method for Solving a Fractional Order Differential Equation with the Cauchy-Type Problem\",\"authors\":\"N. Duc, A. Galimyanov, I. Z. Akhmetov\",\"doi\":\"10.1109/SmartIndustryCon57312.2023.10110823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential equations with Cauchy type initial conditions and boundary conditions play a very important role in mathematics, physics and other sciences. In this article, we have developed an artificial neural network (ANN) method for finding solutions to the Cauchy problem for fractional order differential equations (FODEs). The fractional derivative is considered to be of the Riemann-Liouville type. Here, we used a three-layer feedforward neural architecture (one input layer, one hidden layer and one output layer), L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization method to minimize the error function and change the parameters (weights and biases). Illustrative examples demonstrating the accuracy and efficiency of this method are given. Compare the results of the current method with the mathematical results.\",\"PeriodicalId\":157877,\"journal\":{\"name\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Russian Smart Industry Conference (SmartIndustryCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Russian Smart Industry Conference (SmartIndustryCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIndustryCon57312.2023.10110823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有柯西型初始条件和边界条件的微分方程在数学、物理和其他科学中占有非常重要的地位。在本文中,我们开发了一种人工神经网络(ANN)方法来求解分数阶微分方程(FODEs)的柯西问题。分数阶导数被认为是Riemann-Liouville型。在这里,我们使用三层前馈神经结构(一个输入层,一个隐藏层和一个输出层),L-BFGS (Broyden-Fletcher-Goldfarb-Shanno)优化方法最小化误差函数并改变参数(权值和偏差)。算例说明了该方法的准确性和有效性。将当前方法的结果与数学结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Method for Solving a Fractional Order Differential Equation with the Cauchy-Type Problem
Differential equations with Cauchy type initial conditions and boundary conditions play a very important role in mathematics, physics and other sciences. In this article, we have developed an artificial neural network (ANN) method for finding solutions to the Cauchy problem for fractional order differential equations (FODEs). The fractional derivative is considered to be of the Riemann-Liouville type. Here, we used a three-layer feedforward neural architecture (one input layer, one hidden layer and one output layer), L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization method to minimize the error function and change the parameters (weights and biases). Illustrative examples demonstrating the accuracy and efficiency of this method are given. Compare the results of the current method with the mathematical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信