Dariusz Biernacki , Sergueï Lenglet , Piotr Polesiuk
{"title":"可区别的同伴","authors":"Dariusz Biernacki , Sergueï Lenglet , Piotr Polesiuk","doi":"10.1016/j.entcs.2019.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Coinductive reasoning in terms of bisimulations is in practice routinely supported by carefully crafted up-to techniques that can greatly simplify proofs. However, designing and proving such bisimulation enhancements sound can be challenging, especially when striving for modularity. In this article, we present a theory of up-to techniques that builds on the notion of companion introduced by Pous and that extends our previous work which allows for powerful up-to techniques defined in terms of diacritical progress of relations. The theory of diacritical companion that we put forward works in any complete lattice and makes it possible to modularly prove soundness of up-to techniques which rely on the distinction between passive and active progresses, such as up to context in <em>λ</em>-calculi with control operators and extensionality.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"347 ","pages":"Pages 25-43"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.09.003","citationCount":"3","resultStr":"{\"title\":\"Diacritical Companions\",\"authors\":\"Dariusz Biernacki , Sergueï Lenglet , Piotr Polesiuk\",\"doi\":\"10.1016/j.entcs.2019.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coinductive reasoning in terms of bisimulations is in practice routinely supported by carefully crafted up-to techniques that can greatly simplify proofs. However, designing and proving such bisimulation enhancements sound can be challenging, especially when striving for modularity. In this article, we present a theory of up-to techniques that builds on the notion of companion introduced by Pous and that extends our previous work which allows for powerful up-to techniques defined in terms of diacritical progress of relations. The theory of diacritical companion that we put forward works in any complete lattice and makes it possible to modularly prove soundness of up-to techniques which rely on the distinction between passive and active progresses, such as up to context in <em>λ</em>-calculi with control operators and extensionality.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"347 \",\"pages\":\"Pages 25-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.09.003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119301197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119301197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Coinductive reasoning in terms of bisimulations is in practice routinely supported by carefully crafted up-to techniques that can greatly simplify proofs. However, designing and proving such bisimulation enhancements sound can be challenging, especially when striving for modularity. In this article, we present a theory of up-to techniques that builds on the notion of companion introduced by Pous and that extends our previous work which allows for powerful up-to techniques defined in terms of diacritical progress of relations. The theory of diacritical companion that we put forward works in any complete lattice and makes it possible to modularly prove soundness of up-to techniques which rely on the distinction between passive and active progresses, such as up to context in λ-calculi with control operators and extensionality.
期刊介绍:
ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.