Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, Yong Li
{"title":"基于语义图注意网络的不规则区域人群流量预测","authors":"Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, Yong Li","doi":"10.1145/3501805","DOIUrl":null,"url":null,"abstract":"It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this article, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Crowd Flow Prediction for Irregular Regions with Semantic Graph Attention Network\",\"authors\":\"Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, Yong Li\",\"doi\":\"10.1145/3501805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this article, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3501805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crowd Flow Prediction for Irregular Regions with Semantic Graph Attention Network
It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this article, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.