使用用户和商品相似度的基于图的两步协同过滤:电子商务推荐系统的案例研究

Aghny Arisya Putra, Rahmad Mahendra, I. Budi, Q. Munajat
{"title":"使用用户和商品相似度的基于图的两步协同过滤:电子商务推荐系统的案例研究","authors":"Aghny Arisya Putra, Rahmad Mahendra, I. Budi, Q. Munajat","doi":"10.1109/ICODSE.2017.8285891","DOIUrl":null,"url":null,"abstract":"Collaborative filtering has been used extensively in the commercial recommender system because of its effectiveness and ease of implementation. Collaborative filtering predicts a user's preference based on preferences of similar users or from similar items to items that are purchased by this user. The use of either user-based or item-based similarity is not sufficient. For that particular issues, hybridization of user-based and item-based in one collaborative filtering recommender system can be used to sort relevant item out of a set of candidates. This method applies similarity measures using link prediction to predict target item by combining user similarity with item similarity. The experiment results show that the combination of user and item similarities in two-steps collaborative filtering setting improves accuracy compared to the algorithm applying only user or item similarity.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Two-steps graph-based collaborative filtering using user and item similarities: Case study of E-commerce recommender systems\",\"authors\":\"Aghny Arisya Putra, Rahmad Mahendra, I. Budi, Q. Munajat\",\"doi\":\"10.1109/ICODSE.2017.8285891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering has been used extensively in the commercial recommender system because of its effectiveness and ease of implementation. Collaborative filtering predicts a user's preference based on preferences of similar users or from similar items to items that are purchased by this user. The use of either user-based or item-based similarity is not sufficient. For that particular issues, hybridization of user-based and item-based in one collaborative filtering recommender system can be used to sort relevant item out of a set of candidates. This method applies similarity measures using link prediction to predict target item by combining user similarity with item similarity. The experiment results show that the combination of user and item similarities in two-steps collaborative filtering setting improves accuracy compared to the algorithm applying only user or item similarity.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

协同过滤由于其有效性和易于实现的特点,在商业推荐系统中得到了广泛的应用。协同过滤根据类似用户的偏好或从类似的商品到该用户购买的商品来预测用户的偏好。使用基于用户或基于项目的相似性是不够的。对于特定的问题,在一个协同过滤推荐系统中,基于用户和基于项目的混合可以用来从一组候选中排序出相关的项目。该方法将用户相似度与物品相似度相结合,利用链接预测的相似度度量来预测目标物品。实验结果表明,在两步协同过滤设置中,用户和物品相似度的组合比仅使用用户或物品相似度的算法提高了准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-steps graph-based collaborative filtering using user and item similarities: Case study of E-commerce recommender systems
Collaborative filtering has been used extensively in the commercial recommender system because of its effectiveness and ease of implementation. Collaborative filtering predicts a user's preference based on preferences of similar users or from similar items to items that are purchased by this user. The use of either user-based or item-based similarity is not sufficient. For that particular issues, hybridization of user-based and item-based in one collaborative filtering recommender system can be used to sort relevant item out of a set of candidates. This method applies similarity measures using link prediction to predict target item by combining user similarity with item similarity. The experiment results show that the combination of user and item similarities in two-steps collaborative filtering setting improves accuracy compared to the algorithm applying only user or item similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信