{"title":"关于与加泰罗尼亚数和斐波那契数有关的二项式和的可除性","authors":"Jovan Mikić","doi":"10.5592/co/ccd.2022.05","DOIUrl":null,"url":null,"abstract":"We show that an alternating binomial sum which is connected with the Catalan numbers is divisible by n . A natural generalization of this sum is connected with the generalized Catalan numbers and also divisible by n . A new class of binomial sum is used. In Appendix A, we consider a positive binomial sum connected with Fibonacci and Lucas numbers. In Appendix B, we consider an alternating binomial sum which is also connected with Catalan numbers and divisible by ( a + 1) n + 1. Similar reasoning was already used by the author to reprove more simply Calkin’s result for divisibility of the alternating sum of powers of binomials coefficients by the central binomial coefficient.","PeriodicalId":306191,"journal":{"name":"Proceedings of the 4th Croatian Combinatorial Days","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On divisibility properties of some binomial sums connected with the Catalan and Fibonacci numbers\",\"authors\":\"Jovan Mikić\",\"doi\":\"10.5592/co/ccd.2022.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that an alternating binomial sum which is connected with the Catalan numbers is divisible by n . A natural generalization of this sum is connected with the generalized Catalan numbers and also divisible by n . A new class of binomial sum is used. In Appendix A, we consider a positive binomial sum connected with Fibonacci and Lucas numbers. In Appendix B, we consider an alternating binomial sum which is also connected with Catalan numbers and divisible by ( a + 1) n + 1. Similar reasoning was already used by the author to reprove more simply Calkin’s result for divisibility of the alternating sum of powers of binomials coefficients by the central binomial coefficient.\",\"PeriodicalId\":306191,\"journal\":{\"name\":\"Proceedings of the 4th Croatian Combinatorial Days\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Croatian Combinatorial Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5592/co/ccd.2022.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Croatian Combinatorial Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5592/co/ccd.2022.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们证明了一个与加泰罗尼亚数有关的交替二项式和能被n整除。这个和的一个自然推广与广义加泰罗尼亚数有关,也能被n整除。使用了一类新的二项式和。在附录A中,我们考虑一个与Fibonacci数和Lucas数相关的正二项式和。在附录B中,我们考虑一个交替的二项式和,它也与加泰罗尼亚数有关,并且可以被(a + 1) n + 1整除。类似的推理已经被作者用来更简单地反驳卡尔金关于二项式系数的交替幂和可被中心二项式系数整除的结果。
On divisibility properties of some binomial sums connected with the Catalan and Fibonacci numbers
We show that an alternating binomial sum which is connected with the Catalan numbers is divisible by n . A natural generalization of this sum is connected with the generalized Catalan numbers and also divisible by n . A new class of binomial sum is used. In Appendix A, we consider a positive binomial sum connected with Fibonacci and Lucas numbers. In Appendix B, we consider an alternating binomial sum which is also connected with Catalan numbers and divisible by ( a + 1) n + 1. Similar reasoning was already used by the author to reprove more simply Calkin’s result for divisibility of the alternating sum of powers of binomials coefficients by the central binomial coefficient.