最小的子组顺序包含从一个组到一个循环的两个元素的集合

Rasdin Sandria, Jufra Jufra, Norma Muhtar
{"title":"最小的子组顺序包含从一个组到一个循环的两个元素的集合","authors":"Rasdin Sandria, Jufra Jufra, Norma Muhtar","doi":"10.15548/jostech.v3i1.5667","DOIUrl":null,"url":null,"abstract":"Suppose is any group and then the smallest subgroup of containing is the intersection of all subgroups of containing and denoted by . If then , such a subgroup we know as a cyclic group with generator , such that the order of is the same as the order of . In this research, observations were made on the set in order to know the nature of the membership of and the order of for the case of order 2 and further for of order n if G is a cyclic finite group using the effect of Lagrange Theorem.","PeriodicalId":225496,"journal":{"name":"JOSTECH Journal of Science and Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orde Subgrup Terkecil yang Memuat Suatu Himpunan dengan 2 Unsur dari Suatu Grup Hingga Siklik\",\"authors\":\"Rasdin Sandria, Jufra Jufra, Norma Muhtar\",\"doi\":\"10.15548/jostech.v3i1.5667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose is any group and then the smallest subgroup of containing is the intersection of all subgroups of containing and denoted by . If then , such a subgroup we know as a cyclic group with generator , such that the order of is the same as the order of . In this research, observations were made on the set in order to know the nature of the membership of and the order of for the case of order 2 and further for of order n if G is a cyclic finite group using the effect of Lagrange Theorem.\",\"PeriodicalId\":225496,\"journal\":{\"name\":\"JOSTECH Journal of Science and Technology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOSTECH Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15548/jostech.v3i1.5667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOSTECH Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15548/jostech.v3i1.5667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设为任意群,则包含的最小子群是包含的所有子群与的交集,记为。如果,则这样的子群称为具有生成器的循环群,使得的阶与的阶相同。本文利用拉格朗日定理的影响,对集合进行了观察,以了解在2阶和n阶的情况下G是循环有限群时的隶属性和阶数的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orde Subgrup Terkecil yang Memuat Suatu Himpunan dengan 2 Unsur dari Suatu Grup Hingga Siklik
Suppose is any group and then the smallest subgroup of containing is the intersection of all subgroups of containing and denoted by . If then , such a subgroup we know as a cyclic group with generator , such that the order of is the same as the order of . In this research, observations were made on the set in order to know the nature of the membership of and the order of for the case of order 2 and further for of order n if G is a cyclic finite group using the effect of Lagrange Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信