D. Norenberg, S. Crewell, U. Lohnert, T. Rose, A. Martellucci
{"title":"一种用于评估10 GHz和90 GHz频段大气传播条件的新型微波辐射计","authors":"D. Norenberg, S. Crewell, U. Lohnert, T. Rose, A. Martellucci","doi":"10.1109/MICRAD.2008.4579502","DOIUrl":null,"url":null,"abstract":"In order to quantify atmospheric perturbations on satellite signals a new ground based ultra stable microwave radiometer is developed. In addition to several K- and V-band channels two further Ku- and W-band channels are implemented. This frequency combination provides sensitivity towards atmospheric water vapour and oxygen, as well as to rain and cloud droplets. To perform high stable measurements, the radiometer is equipped by a continuous calibration method using a Dicke switch and a noise diode. This yields to radiometer stability for integration times up to 2000 seconds.","PeriodicalId":193521,"journal":{"name":"2008 Microwave Radiometry and Remote Sensing of the Environment","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel microwave radiometer for assessment of atmospheric propagation conditions for 10 and 90 GHz frequency bands\",\"authors\":\"D. Norenberg, S. Crewell, U. Lohnert, T. Rose, A. Martellucci\",\"doi\":\"10.1109/MICRAD.2008.4579502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to quantify atmospheric perturbations on satellite signals a new ground based ultra stable microwave radiometer is developed. In addition to several K- and V-band channels two further Ku- and W-band channels are implemented. This frequency combination provides sensitivity towards atmospheric water vapour and oxygen, as well as to rain and cloud droplets. To perform high stable measurements, the radiometer is equipped by a continuous calibration method using a Dicke switch and a noise diode. This yields to radiometer stability for integration times up to 2000 seconds.\",\"PeriodicalId\":193521,\"journal\":{\"name\":\"2008 Microwave Radiometry and Remote Sensing of the Environment\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Microwave Radiometry and Remote Sensing of the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICRAD.2008.4579502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Microwave Radiometry and Remote Sensing of the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRAD.2008.4579502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel microwave radiometer for assessment of atmospheric propagation conditions for 10 and 90 GHz frequency bands
In order to quantify atmospheric perturbations on satellite signals a new ground based ultra stable microwave radiometer is developed. In addition to several K- and V-band channels two further Ku- and W-band channels are implemented. This frequency combination provides sensitivity towards atmospheric water vapour and oxygen, as well as to rain and cloud droplets. To perform high stable measurements, the radiometer is equipped by a continuous calibration method using a Dicke switch and a noise diode. This yields to radiometer stability for integration times up to 2000 seconds.