{"title":"硅酮荧光氧传感器的制备与表征","authors":"D. Herman Stephen, Jennifer Blain Christen","doi":"10.1109/BIOCAS.2010.5709573","DOIUrl":null,"url":null,"abstract":"We discuss the fabrication and characterization details of an optical oxygen sensor for use in a cell culture microsystem. The sensor operates by measuring changes in the fluorescence intensity of (2–2'-bipyridine) dichlororuthenium (II) hexahydrate molecules that are immobilized in a silicone film. The sensor we demonstrate herein is highly linear, reversible, and is compatible with common biomedical sterilization procedures.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterization of a silicone fluorescent oxygen sensor\",\"authors\":\"D. Herman Stephen, Jennifer Blain Christen\",\"doi\":\"10.1109/BIOCAS.2010.5709573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the fabrication and characterization details of an optical oxygen sensor for use in a cell culture microsystem. The sensor operates by measuring changes in the fluorescence intensity of (2–2'-bipyridine) dichlororuthenium (II) hexahydrate molecules that are immobilized in a silicone film. The sensor we demonstrate herein is highly linear, reversible, and is compatible with common biomedical sterilization procedures.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and characterization of a silicone fluorescent oxygen sensor
We discuss the fabrication and characterization details of an optical oxygen sensor for use in a cell culture microsystem. The sensor operates by measuring changes in the fluorescence intensity of (2–2'-bipyridine) dichlororuthenium (II) hexahydrate molecules that are immobilized in a silicone film. The sensor we demonstrate herein is highly linear, reversible, and is compatible with common biomedical sterilization procedures.