基于Dempster-Shafer证据理论的多光谱/高光谱图像目标分类方法

M. Popov, Maxim V. Topolnitskiy
{"title":"基于Dempster-Shafer证据理论的多光谱/高光谱图像目标分类方法","authors":"M. Popov, Maxim V. Topolnitskiy","doi":"10.1109/DT.2014.6868729","DOIUrl":null,"url":null,"abstract":"The algorithm for object classification on multispectral/hyperspectral images based on the Dempster-Shafer evidence theory is represented. The algorithm allows detecting not only separate classes but also their composition, i.e. takes into account the “mixed” pixels inherent in the presence of medium spatial resolution images.","PeriodicalId":330975,"journal":{"name":"The 10th International Conference on Digital Technologies 2014","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dempster-Shafer evidence theory-based approach to object classification on multispectral/hyperspectral images\",\"authors\":\"M. Popov, Maxim V. Topolnitskiy\",\"doi\":\"10.1109/DT.2014.6868729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algorithm for object classification on multispectral/hyperspectral images based on the Dempster-Shafer evidence theory is represented. The algorithm allows detecting not only separate classes but also their composition, i.e. takes into account the “mixed” pixels inherent in the presence of medium spatial resolution images.\",\"PeriodicalId\":330975,\"journal\":{\"name\":\"The 10th International Conference on Digital Technologies 2014\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th International Conference on Digital Technologies 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DT.2014.6868729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Digital Technologies 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2014.6868729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于Dempster-Shafer证据理论的多光谱/高光谱图像目标分类算法。该算法不仅可以检测单独的类,还可以检测它们的组成,即考虑到中等空间分辨率图像中固有的“混合”像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dempster-Shafer evidence theory-based approach to object classification on multispectral/hyperspectral images
The algorithm for object classification on multispectral/hyperspectral images based on the Dempster-Shafer evidence theory is represented. The algorithm allows detecting not only separate classes but also their composition, i.e. takes into account the “mixed” pixels inherent in the presence of medium spatial resolution images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信