基于粒子滤波的时间序列分析Web应用程序可在云计算系统上使用

H. Nagao, T. Higuchi
{"title":"基于粒子滤波的时间序列分析Web应用程序可在云计算系统上使用","authors":"H. Nagao, T. Higuchi","doi":"10.1109/ICIF.2010.5712015","DOIUrl":null,"url":null,"abstract":"We develop web application “CloCK-TiME” (Cloud Computing Kernel for Time-series Modeling Engine), which enables users to analyze their time-series data by using a networked PC cluster in a cloud computing system. This software decomposes a given multivariate time-series data into trend, seasonal, autoregressive (AR), and observation noise components, by using the particle filter (PF) algorithm. We also develop a user interface, by which users can set parameters needed in the analysis such as trend order, seasonal period, AR order, and the number of particles. We show an application example in the case of tide gauge data recorded along the coastline of Japan. We are planning to improve our analysis engine in order to obtain not only optimum model parameters but also their posterior distributions eventually by a hybrid method consisting of the PF and the MCMC algorithms.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web application for time-series analysis based on particle filter available on cloud computing system\",\"authors\":\"H. Nagao, T. Higuchi\",\"doi\":\"10.1109/ICIF.2010.5712015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop web application “CloCK-TiME” (Cloud Computing Kernel for Time-series Modeling Engine), which enables users to analyze their time-series data by using a networked PC cluster in a cloud computing system. This software decomposes a given multivariate time-series data into trend, seasonal, autoregressive (AR), and observation noise components, by using the particle filter (PF) algorithm. We also develop a user interface, by which users can set parameters needed in the analysis such as trend order, seasonal period, AR order, and the number of particles. We show an application example in the case of tide gauge data recorded along the coastline of Japan. We are planning to improve our analysis engine in order to obtain not only optimum model parameters but also their posterior distributions eventually by a hybrid method consisting of the PF and the MCMC algorithms.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5712015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一款名为“CloCK-TiME”(Cloud Computing Kernel for Time-series Modeling Engine)的web应用程序,用户可以使用云计算系统中的联网PC集群来分析他们的时间序列数据。该软件通过使用粒子滤波(PF)算法,将给定的多变量时间序列数据分解为趋势、季节、自回归(AR)和观测噪声成分。我们还开发了一个用户界面,用户可以设置分析中需要的参数,如趋势顺序、季节周期、AR顺序、粒子数量。我们给出了一个应用实例,以日本海岸线记录的潮汐计数据为例。我们计划改进我们的分析引擎,以便通过由PF和MCMC算法组成的混合方法最终获得最优模型参数和它们的后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web application for time-series analysis based on particle filter available on cloud computing system
We develop web application “CloCK-TiME” (Cloud Computing Kernel for Time-series Modeling Engine), which enables users to analyze their time-series data by using a networked PC cluster in a cloud computing system. This software decomposes a given multivariate time-series data into trend, seasonal, autoregressive (AR), and observation noise components, by using the particle filter (PF) algorithm. We also develop a user interface, by which users can set parameters needed in the analysis such as trend order, seasonal period, AR order, and the number of particles. We show an application example in the case of tide gauge data recorded along the coastline of Japan. We are planning to improve our analysis engine in order to obtain not only optimum model parameters but also their posterior distributions eventually by a hybrid method consisting of the PF and the MCMC algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信