基于机器学习的Twitter数据情感分析

K. M, S. G, Aravindhraj N, Priyanka S
{"title":"基于机器学习的Twitter数据情感分析","authors":"K. M, S. G, Aravindhraj N, Priyanka S","doi":"10.1109/ICACCE46606.2019.9080003","DOIUrl":null,"url":null,"abstract":"In these recent days, evaluation and review marks a most important role in achieving the name for a brand or an item and its administration. The basic idea behind this assessment and audit is to make the brands to be familiar with customers which empower the variety of utilization. Twitter data is used for testing the above scenario due its ample size and scattered behavior. This paper performs the hypothesis investigation about the individual's feelings depending on the collected data. The motive behind the proposed work is to assess many individual's positive view and negative view based on the content audit using the surveys from the twitter. The twitter data is estimated by applying different weighting schemes to improve the classifier accuracy.","PeriodicalId":317123,"journal":{"name":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Sentiment Analysis of Twitter Data\",\"authors\":\"K. M, S. G, Aravindhraj N, Priyanka S\",\"doi\":\"10.1109/ICACCE46606.2019.9080003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In these recent days, evaluation and review marks a most important role in achieving the name for a brand or an item and its administration. The basic idea behind this assessment and audit is to make the brands to be familiar with customers which empower the variety of utilization. Twitter data is used for testing the above scenario due its ample size and scattered behavior. This paper performs the hypothesis investigation about the individual's feelings depending on the collected data. The motive behind the proposed work is to assess many individual's positive view and negative view based on the content audit using the surveys from the twitter. The twitter data is estimated by applying different weighting schemes to improve the classifier accuracy.\",\"PeriodicalId\":317123,\"journal\":{\"name\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCE46606.2019.9080003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCE46606.2019.9080003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的日子里,评价和审查标志在实现品牌或项目的名称及其管理中发挥着最重要的作用。这种评估和审计背后的基本思想是使品牌熟悉客户,从而赋予各种利用。Twitter数据用于测试上述场景,因为它具有足够的大小和分散的行为。本文根据收集到的数据,对个体的感受进行假设调查。提议的工作背后的动机是利用twitter的调查来评估许多个人的积极观点和消极观点,这些观点基于内容审计。利用不同的加权方案对推特数据进行估计,以提高分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Sentiment Analysis of Twitter Data
In these recent days, evaluation and review marks a most important role in achieving the name for a brand or an item and its administration. The basic idea behind this assessment and audit is to make the brands to be familiar with customers which empower the variety of utilization. Twitter data is used for testing the above scenario due its ample size and scattered behavior. This paper performs the hypothesis investigation about the individual's feelings depending on the collected data. The motive behind the proposed work is to assess many individual's positive view and negative view based on the content audit using the surveys from the twitter. The twitter data is estimated by applying different weighting schemes to improve the classifier accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信