基于输入的混合系统稳定性推理的预定顺序

P. Prabhakar, Jun Liu, R. Murray
{"title":"基于输入的混合系统稳定性推理的预定顺序","authors":"P. Prabhakar, Jun Liu, R. Murray","doi":"10.1109/EMSOFT.2013.6658602","DOIUrl":null,"url":null,"abstract":"Pre-orders on systems are the basis for abstraction based verification of systems. In this paper, we investigate pre-orders for reasoning about stability with respect to inputs of hybrid systems. First, we present a superposition type theorem which gives a characterization of the classical incremental input-to-state stability of continuous systems in terms of the traditional ε-δ definition of stability. We use this as the basis for defining a notion of incremental input-to-state stability of hybrid systems. Next, we present a pre-order on hybrid systems which preserves incremental input-to-state stability, by extending the classical definitions of bisimulation relations on systems with input, with uniform continuity constraints. We show that the uniform continuity is a necessary requirement by exhibiting counter-examples to show that weaker notions of input bisimulation with just continuity requirements do not suffice to preserve stability. Finally, we demonstrate that the definitions are useful, by exhibiting concrete abstraction functions which satisfy the definitions of pre-orders.","PeriodicalId":325726,"journal":{"name":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Pre-orders for reasoning about stability properties with respect to input of hybrid systems\",\"authors\":\"P. Prabhakar, Jun Liu, R. Murray\",\"doi\":\"10.1109/EMSOFT.2013.6658602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-orders on systems are the basis for abstraction based verification of systems. In this paper, we investigate pre-orders for reasoning about stability with respect to inputs of hybrid systems. First, we present a superposition type theorem which gives a characterization of the classical incremental input-to-state stability of continuous systems in terms of the traditional ε-δ definition of stability. We use this as the basis for defining a notion of incremental input-to-state stability of hybrid systems. Next, we present a pre-order on hybrid systems which preserves incremental input-to-state stability, by extending the classical definitions of bisimulation relations on systems with input, with uniform continuity constraints. We show that the uniform continuity is a necessary requirement by exhibiting counter-examples to show that weaker notions of input bisimulation with just continuity requirements do not suffice to preserve stability. Finally, we demonstrate that the definitions are useful, by exhibiting concrete abstraction functions which satisfy the definitions of pre-orders.\",\"PeriodicalId\":325726,\"journal\":{\"name\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2013.6658602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2013.6658602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

系统预购是基于抽象的系统验证的基础。在本文中,我们研究了关于混合系统的稳定性推理的预定顺序。首先,我们给出了一个叠加型定理,根据稳定性的传统ε-δ定义给出了连续系统的经典增量输入到状态稳定性的表征。我们将此作为定义混合系统的增量输入到状态稳定性概念的基础。其次,通过扩展双模拟关系的经典定义,在具有一致连续性约束的输入系统上,我们给出了保留增量输入到状态稳定性的混合系统的预阶。我们通过展示反例来证明均匀连续性是一个必要条件,以证明仅具有连续性要求的弱输入双模拟概念不足以保持稳定性。最后,我们通过展示满足预定订单定义的具体抽象函数来证明这些定义是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-orders for reasoning about stability properties with respect to input of hybrid systems
Pre-orders on systems are the basis for abstraction based verification of systems. In this paper, we investigate pre-orders for reasoning about stability with respect to inputs of hybrid systems. First, we present a superposition type theorem which gives a characterization of the classical incremental input-to-state stability of continuous systems in terms of the traditional ε-δ definition of stability. We use this as the basis for defining a notion of incremental input-to-state stability of hybrid systems. Next, we present a pre-order on hybrid systems which preserves incremental input-to-state stability, by extending the classical definitions of bisimulation relations on systems with input, with uniform continuity constraints. We show that the uniform continuity is a necessary requirement by exhibiting counter-examples to show that weaker notions of input bisimulation with just continuity requirements do not suffice to preserve stability. Finally, we demonstrate that the definitions are useful, by exhibiting concrete abstraction functions which satisfy the definitions of pre-orders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信