基于潜在时空Hawkes过程的LBSNs语义标注

Manisha Dubey, P. K. Srijith, M. Desarkar
{"title":"基于潜在时空Hawkes过程的LBSNs语义标注","authors":"Manisha Dubey, P. K. Srijith, M. Desarkar","doi":"10.1145/3397536.3422233","DOIUrl":null,"url":null,"abstract":"The prevalence of location-based social networks (LBSNs) has eased the understanding of human mobility patterns. However, categories which act as semantic characterization of the location, might be missing for some check-ins and can adversely affect modelling the mobility dynamics of users. At the same time, mobility patterns provide cues on the missing semantic categories. In this paper, we simultaneously address the problem of semantic annotation of locations and location adoption dynamics of users. We propose our model HAP-SAP, a latent spatio-temporal multivariate Hawkes process, which considers latent semantic category influences, and temporal and spatial mobility patterns of users. The inferred semantic categories can supplement our model on predicting the next check-in events by users. Our experiments on real datasets demonstrate the effectiveness of the proposed model for the semantic annotation and location adoption modelling tasks.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HAP-SAP: Semantic Annotation in LBSNs using Latent Spatio-Temporal Hawkes Process\",\"authors\":\"Manisha Dubey, P. K. Srijith, M. Desarkar\",\"doi\":\"10.1145/3397536.3422233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of location-based social networks (LBSNs) has eased the understanding of human mobility patterns. However, categories which act as semantic characterization of the location, might be missing for some check-ins and can adversely affect modelling the mobility dynamics of users. At the same time, mobility patterns provide cues on the missing semantic categories. In this paper, we simultaneously address the problem of semantic annotation of locations and location adoption dynamics of users. We propose our model HAP-SAP, a latent spatio-temporal multivariate Hawkes process, which considers latent semantic category influences, and temporal and spatial mobility patterns of users. The inferred semantic categories can supplement our model on predicting the next check-in events by users. Our experiments on real datasets demonstrate the effectiveness of the proposed model for the semantic annotation and location adoption modelling tasks.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于位置的社交网络(LBSNs)的流行使人们更容易理解人类的流动模式。然而,作为位置语义特征的类别可能会在某些签入中丢失,并且可能对用户的移动性动态建模产生不利影响。同时,迁移模式为缺失的语义范畴提供线索。在本文中,我们同时解决了位置语义标注和用户位置采用动态的问题。我们提出了一个潜在的时空多元Hawkes过程模型HAP-SAP,该模型考虑了潜在的语义类别影响,以及用户的时空移动模式。推断的语义类别可以补充我们的模型来预测用户的下一个签入事件。我们在真实数据集上的实验证明了该模型在语义标注和位置采用建模任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HAP-SAP: Semantic Annotation in LBSNs using Latent Spatio-Temporal Hawkes Process
The prevalence of location-based social networks (LBSNs) has eased the understanding of human mobility patterns. However, categories which act as semantic characterization of the location, might be missing for some check-ins and can adversely affect modelling the mobility dynamics of users. At the same time, mobility patterns provide cues on the missing semantic categories. In this paper, we simultaneously address the problem of semantic annotation of locations and location adoption dynamics of users. We propose our model HAP-SAP, a latent spatio-temporal multivariate Hawkes process, which considers latent semantic category influences, and temporal and spatial mobility patterns of users. The inferred semantic categories can supplement our model on predicting the next check-in events by users. Our experiments on real datasets demonstrate the effectiveness of the proposed model for the semantic annotation and location adoption modelling tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信