GaN肖特基二极管中后势垒层中碳对表面电场峰的影响

B. Bakeroot, B. D. Jaeger, N. Ronchi, S. Stoffels, M. Zhao, S. Decoutere
{"title":"GaN肖特基二极管中后势垒层中碳对表面电场峰的影响","authors":"B. Bakeroot, B. D. Jaeger, N. Ronchi, S. Stoffels, M. Zhao, S. Decoutere","doi":"10.1109/SISPAD.2018.8551652","DOIUrl":null,"url":null,"abstract":"Technology Computer Aided Design simulations are used to assess the influence of carbon in the back-barrier layers of GaN-on-Si wafers on the voltage distribution in GaN Schottky diodes. It is shown that carbon cannot be present as an acceptor only – as it is commonly assumed. The carbon needs to be compensated by donors or partly electrically inactive in order to explain the observed high hard breakdown voltage in GaN-onSi Schottky diodes. Furthermore, it is shown that the level of donor compensation of the carbon will have a significant influence on the two-dimensional voltage distribution in the devices, and, hence, on the surface electric field peaks. This conclusion is important to consider in the design of field plate extensions of the Schottky diode.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"1150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of carbon in the back-barrier layers on the surface electric field peaks in GaN Schottky diodes\",\"authors\":\"B. Bakeroot, B. D. Jaeger, N. Ronchi, S. Stoffels, M. Zhao, S. Decoutere\",\"doi\":\"10.1109/SISPAD.2018.8551652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology Computer Aided Design simulations are used to assess the influence of carbon in the back-barrier layers of GaN-on-Si wafers on the voltage distribution in GaN Schottky diodes. It is shown that carbon cannot be present as an acceptor only – as it is commonly assumed. The carbon needs to be compensated by donors or partly electrically inactive in order to explain the observed high hard breakdown voltage in GaN-onSi Schottky diodes. Furthermore, it is shown that the level of donor compensation of the carbon will have a significant influence on the two-dimensional voltage distribution in the devices, and, hence, on the surface electric field peaks. This conclusion is important to consider in the design of field plate extensions of the Schottky diode.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"1150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用计算机辅助设计模拟技术,评估了硅基氮化镓硅片背势垒层中碳对氮化镓肖特基二极管电压分布的影响。结果表明,碳不能像通常认为的那样仅仅作为受体存在。为了解释在GaN-onSi肖特基二极管中观察到的高硬击穿电压,碳需要被供体补偿或部分电非活性。此外,研究表明,碳的供体补偿水平将对器件中的二维电压分布产生显著影响,从而对表面电场峰产生显著影响。这一结论对肖特基二极管场极板扩展的设计具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of carbon in the back-barrier layers on the surface electric field peaks in GaN Schottky diodes
Technology Computer Aided Design simulations are used to assess the influence of carbon in the back-barrier layers of GaN-on-Si wafers on the voltage distribution in GaN Schottky diodes. It is shown that carbon cannot be present as an acceptor only – as it is commonly assumed. The carbon needs to be compensated by donors or partly electrically inactive in order to explain the observed high hard breakdown voltage in GaN-onSi Schottky diodes. Furthermore, it is shown that the level of donor compensation of the carbon will have a significant influence on the two-dimensional voltage distribution in the devices, and, hence, on the surface electric field peaks. This conclusion is important to consider in the design of field plate extensions of the Schottky diode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信