{"title":"柔性电子领域的可持续替代导电填料:填料尺寸对苯乙烯-[乙烯-(乙烯-丙烯)]-苯乙烯嵌段共聚物(SEEPS)复合材料形态和电学性能的影响","authors":"M. S. Cetin, O. Toprakci, H. A. Karahan Toprakci","doi":"10.30897/ijegeo.1061935","DOIUrl":null,"url":null,"abstract":"Sustainability is getting popular for many engineering applications from packaging to textiles, energy to electronics. Since renewable, environmental friendly sources lowers the negative impacts of the end product on ecology, sustainability studies generally start with the raw materials. The sustainability of electronic materials has gained importance because of limited amount of resources and increasing costs as well as environmental restrictions. In this study, pistachio shell waste was used to synthesize conductive fillers for the fabrication of sustainable flexible electronics. Pistachio shell waste was carbonized. After carbonization, two different grounding settings were used to obtain different filler sizes. In order to compare the effects of filler size on electrical and morphological properties of the composites, six different samples were prepared based on filler concentration with styrene-[ethylene-(ethylene-propylene)]-styrene block copolymer. Homogeneous filler distribution and good filler-matrix interface were observed for both composite sets. Filler size was found significant in terms of the electrical conductivity of the composites. For larger fillers, the percolation region was found to shift to lower concentration compared to smaller filler size.","PeriodicalId":176110,"journal":{"name":"International Journal of Environment and Geoinformatics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable, Alternative Conductive Fillers for Flexible Electronics: Investigation of Filler Size on Morphological and Electrical Properties of Styrene-[Ethylene-(Ethylene-Propylene)]-Styrene Block Copolymer (SEEPS) Composites\",\"authors\":\"M. S. Cetin, O. Toprakci, H. A. Karahan Toprakci\",\"doi\":\"10.30897/ijegeo.1061935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainability is getting popular for many engineering applications from packaging to textiles, energy to electronics. Since renewable, environmental friendly sources lowers the negative impacts of the end product on ecology, sustainability studies generally start with the raw materials. The sustainability of electronic materials has gained importance because of limited amount of resources and increasing costs as well as environmental restrictions. In this study, pistachio shell waste was used to synthesize conductive fillers for the fabrication of sustainable flexible electronics. Pistachio shell waste was carbonized. After carbonization, two different grounding settings were used to obtain different filler sizes. In order to compare the effects of filler size on electrical and morphological properties of the composites, six different samples were prepared based on filler concentration with styrene-[ethylene-(ethylene-propylene)]-styrene block copolymer. Homogeneous filler distribution and good filler-matrix interface were observed for both composite sets. Filler size was found significant in terms of the electrical conductivity of the composites. For larger fillers, the percolation region was found to shift to lower concentration compared to smaller filler size.\",\"PeriodicalId\":176110,\"journal\":{\"name\":\"International Journal of Environment and Geoinformatics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environment and Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30897/ijegeo.1061935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environment and Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30897/ijegeo.1061935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable, Alternative Conductive Fillers for Flexible Electronics: Investigation of Filler Size on Morphological and Electrical Properties of Styrene-[Ethylene-(Ethylene-Propylene)]-Styrene Block Copolymer (SEEPS) Composites
Sustainability is getting popular for many engineering applications from packaging to textiles, energy to electronics. Since renewable, environmental friendly sources lowers the negative impacts of the end product on ecology, sustainability studies generally start with the raw materials. The sustainability of electronic materials has gained importance because of limited amount of resources and increasing costs as well as environmental restrictions. In this study, pistachio shell waste was used to synthesize conductive fillers for the fabrication of sustainable flexible electronics. Pistachio shell waste was carbonized. After carbonization, two different grounding settings were used to obtain different filler sizes. In order to compare the effects of filler size on electrical and morphological properties of the composites, six different samples were prepared based on filler concentration with styrene-[ethylene-(ethylene-propylene)]-styrene block copolymer. Homogeneous filler distribution and good filler-matrix interface were observed for both composite sets. Filler size was found significant in terms of the electrical conductivity of the composites. For larger fillers, the percolation region was found to shift to lower concentration compared to smaller filler size.