一种新的多媒体通信媒体内同步机制

M. Yuang, P. Tien
{"title":"一种新的多媒体通信媒体内同步机制","authors":"M. Yuang, P. Tien","doi":"10.1109/LCN.1996.558133","DOIUrl":null,"url":null,"abstract":"Multimedia communications often require intra-media synchronization for video data to prevent potential playout discontinuity resulting from network delay variation (jitter) while still achieving satisfactory playout throughput. We propose a neural-network-based intra-media synchronization mechanism, called neural network smoother (NNS). The NNS is composed of a neural network (NN) traffic predictor, an NN window determinator, and a window-based playout smoothing algorithm. The NN traffic predictor employs an on-line-trained backpropagation neural network (BPNN) to periodically predict future traffic characteristics. With the predicted traffic characteristics, the NN window determinator determines the corresponding optimal window by means of an off-line-trained BPNN in an effort to achieve a maximum of the playout quality (Q) value. The window-based playout smoothing algorithm then dynamically adopts various playout rates according to the window and the number of packets in the buffer. Compared to two other playout approaches, simulation results show that NNS achieves high-throughput and low-discontinuity playout under a variety of traffic arrivals.","PeriodicalId":420811,"journal":{"name":"Proceedings of LCN - 21st Annual Conference on Local Computer Networks","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel intra-media synchronization mechanism for multimedia communications\",\"authors\":\"M. Yuang, P. Tien\",\"doi\":\"10.1109/LCN.1996.558133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimedia communications often require intra-media synchronization for video data to prevent potential playout discontinuity resulting from network delay variation (jitter) while still achieving satisfactory playout throughput. We propose a neural-network-based intra-media synchronization mechanism, called neural network smoother (NNS). The NNS is composed of a neural network (NN) traffic predictor, an NN window determinator, and a window-based playout smoothing algorithm. The NN traffic predictor employs an on-line-trained backpropagation neural network (BPNN) to periodically predict future traffic characteristics. With the predicted traffic characteristics, the NN window determinator determines the corresponding optimal window by means of an off-line-trained BPNN in an effort to achieve a maximum of the playout quality (Q) value. The window-based playout smoothing algorithm then dynamically adopts various playout rates according to the window and the number of packets in the buffer. Compared to two other playout approaches, simulation results show that NNS achieves high-throughput and low-discontinuity playout under a variety of traffic arrivals.\",\"PeriodicalId\":420811,\"journal\":{\"name\":\"Proceedings of LCN - 21st Annual Conference on Local Computer Networks\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of LCN - 21st Annual Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.1996.558133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of LCN - 21st Annual Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.1996.558133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多媒体通信通常需要视频数据的媒体内同步,以防止由于网络延迟变化(抖动)而导致的潜在播放不连续,同时仍能获得令人满意的播放吞吐量。我们提出了一种基于神经网络的媒体内同步机制,称为神经网络平滑(NNS)。该网络由一个神经网络流量预测器、一个神经网络窗口判定器和一个基于窗口的播放平滑算法组成。神经网络流量预测器采用在线训练的反向传播神经网络(BPNN)周期性预测未来的流量特征。根据预测的流量特征,神经网络窗口判定器通过离线训练的BPNN确定相应的最优窗口,以达到最大的播放质量(Q)值。然后,基于窗口的播放平滑算法根据窗口和缓冲区中的数据包数量动态地采用不同的播放速率。仿真结果表明,与其他两种播放方法相比,NNS在多种流量到达情况下实现了高吞吐量和低间断播放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel intra-media synchronization mechanism for multimedia communications
Multimedia communications often require intra-media synchronization for video data to prevent potential playout discontinuity resulting from network delay variation (jitter) while still achieving satisfactory playout throughput. We propose a neural-network-based intra-media synchronization mechanism, called neural network smoother (NNS). The NNS is composed of a neural network (NN) traffic predictor, an NN window determinator, and a window-based playout smoothing algorithm. The NN traffic predictor employs an on-line-trained backpropagation neural network (BPNN) to periodically predict future traffic characteristics. With the predicted traffic characteristics, the NN window determinator determines the corresponding optimal window by means of an off-line-trained BPNN in an effort to achieve a maximum of the playout quality (Q) value. The window-based playout smoothing algorithm then dynamically adopts various playout rates according to the window and the number of packets in the buffer. Compared to two other playout approaches, simulation results show that NNS achieves high-throughput and low-discontinuity playout under a variety of traffic arrivals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信