现场发电的电池支持制造过程的需求侧管理

Philipp Wohlgenannt, M. Preißinger, Mohan Lai Kolhe, P. Kepplinger
{"title":"现场发电的电池支持制造过程的需求侧管理","authors":"Philipp Wohlgenannt, M. Preißinger, Mohan Lai Kolhe, P. Kepplinger","doi":"10.1109/energycon53164.2022.9830336","DOIUrl":null,"url":null,"abstract":"Due to the global competition in manufacturing, flexibility to provide for individually customized products is considered an important selling point. Constantly changing manufacturing processes face higher production costs than well known reoccurring schedules. To lower these costs in general, we propose a model predictive control concept to reduce manufacturing energy costs in particular, using an existing digital twin to estimate the load of the different manufacturing steps. Based on a mixed integer linear programming formulation of the battery-supported manufacturing process, the system makes optimum use of the on-site photovoltaic generation by production scheduling and adaptive battery control. A simulation study considering a time of use and a real-time pricing scenario provides a proof of concept.","PeriodicalId":106388,"journal":{"name":"2022 IEEE 7th International Energy Conference (ENERGYCON)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand Side Management of a Battery-Supported Manufacturing Process with On-Site Generation\",\"authors\":\"Philipp Wohlgenannt, M. Preißinger, Mohan Lai Kolhe, P. Kepplinger\",\"doi\":\"10.1109/energycon53164.2022.9830336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the global competition in manufacturing, flexibility to provide for individually customized products is considered an important selling point. Constantly changing manufacturing processes face higher production costs than well known reoccurring schedules. To lower these costs in general, we propose a model predictive control concept to reduce manufacturing energy costs in particular, using an existing digital twin to estimate the load of the different manufacturing steps. Based on a mixed integer linear programming formulation of the battery-supported manufacturing process, the system makes optimum use of the on-site photovoltaic generation by production scheduling and adaptive battery control. A simulation study considering a time of use and a real-time pricing scenario provides a proof of concept.\",\"PeriodicalId\":106388,\"journal\":{\"name\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/energycon53164.2022.9830336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/energycon53164.2022.9830336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于制造业的全球竞争,提供个性化定制产品的灵活性被认为是一个重要的卖点。不断变化的制造过程面临着比众所周知的重复出现的时间表更高的生产成本。为了总体上降低这些成本,我们提出了一个模型预测控制概念,特别是降低制造能源成本,使用现有的数字孪生来估计不同制造步骤的负载。该系统基于电池支撑制造过程的混合整数线性规划公式,通过生产调度和自适应电池控制,优化利用现场光伏发电。考虑使用时间和实时定价场景的仿真研究提供了概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand Side Management of a Battery-Supported Manufacturing Process with On-Site Generation
Due to the global competition in manufacturing, flexibility to provide for individually customized products is considered an important selling point. Constantly changing manufacturing processes face higher production costs than well known reoccurring schedules. To lower these costs in general, we propose a model predictive control concept to reduce manufacturing energy costs in particular, using an existing digital twin to estimate the load of the different manufacturing steps. Based on a mixed integer linear programming formulation of the battery-supported manufacturing process, the system makes optimum use of the on-site photovoltaic generation by production scheduling and adaptive battery control. A simulation study considering a time of use and a real-time pricing scenario provides a proof of concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信