基于近似计算的推荐系统加速矩阵分解

Yining Wu, G. Sai, Shengyu Duan
{"title":"基于近似计算的推荐系统加速矩阵分解","authors":"Yining Wu, G. Sai, Shengyu Duan","doi":"10.1109/EMSOFT55006.2022.00014","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) is widely used in collaborative filtering-based recommendation systems, but the computational complexity greatly increases for larger scaled recommendation systems. We propose to accelerate MF by performing approximate matrix multiplications, considering the joint sparsity of the decomposed matrices. We show our method realizes a more than 1.1 speedup with a minimal error, and the speedup can be higher for the recommendation systems with larger scales.","PeriodicalId":371537,"journal":{"name":"2022 International Conference on Embedded Software (EMSOFT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-in-Progress: Accelerated Matrix Factorization by Approximate Computing for Recommendation System\",\"authors\":\"Yining Wu, G. Sai, Shengyu Duan\",\"doi\":\"10.1109/EMSOFT55006.2022.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization (MF) is widely used in collaborative filtering-based recommendation systems, but the computational complexity greatly increases for larger scaled recommendation systems. We propose to accelerate MF by performing approximate matrix multiplications, considering the joint sparsity of the decomposed matrices. We show our method realizes a more than 1.1 speedup with a minimal error, and the speedup can be higher for the recommendation systems with larger scales.\",\"PeriodicalId\":371537,\"journal\":{\"name\":\"2022 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT55006.2022.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT55006.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵分解(Matrix factorization, MF)在基于协同过滤的推荐系统中得到了广泛的应用,但对于规模较大的推荐系统,其计算复杂度会大大增加。考虑到分解矩阵的联合稀疏性,我们建议通过执行近似矩阵乘法来加速MF。我们的方法在最小误差的情况下实现了超过1.1的加速,并且对于规模更大的推荐系统可以实现更高的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Accelerated Matrix Factorization by Approximate Computing for Recommendation System
Matrix factorization (MF) is widely used in collaborative filtering-based recommendation systems, but the computational complexity greatly increases for larger scaled recommendation systems. We propose to accelerate MF by performing approximate matrix multiplications, considering the joint sparsity of the decomposed matrices. We show our method realizes a more than 1.1 speedup with a minimal error, and the speedup can be higher for the recommendation systems with larger scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信