{"title":"容错协议的基本失效模型","authors":"K. Echtle, A. Masum","doi":"10.1109/IPDS.2000.839465","DOIUrl":null,"url":null,"abstract":"The application area of distributed systems determines the extent to which protocols must provide fault detection and/or fault tolerance. Highest dependability can not be obtained without the cost of a substantial overhead. In order to reduce the message number and the time consumption, protocols should be tailored best to application requirements and system properties. This paper presents a novel failure classification as an instrument to limit fault detection and tolerance features to a reasonable failure set. Evaluation of protocols shows that just exclusion of \"exotic\" failures, which are most unlikely to occur enable a drastic increase in efficiency. Unlike other approaches, our failure classification is based on a completely functional model and on the definition of so-called failure capabilities. This overcomes the limitations of strictly hierarchic and time/value-based models. The new approach provides a framework to precisely specify common failure assumptions as well as very specialized scenarios-in particular so-called non-cooperative Byzantine failures.","PeriodicalId":162523,"journal":{"name":"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A fundamental failure model for fault-tolerant protocols\",\"authors\":\"K. Echtle, A. Masum\",\"doi\":\"10.1109/IPDS.2000.839465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application area of distributed systems determines the extent to which protocols must provide fault detection and/or fault tolerance. Highest dependability can not be obtained without the cost of a substantial overhead. In order to reduce the message number and the time consumption, protocols should be tailored best to application requirements and system properties. This paper presents a novel failure classification as an instrument to limit fault detection and tolerance features to a reasonable failure set. Evaluation of protocols shows that just exclusion of \\\"exotic\\\" failures, which are most unlikely to occur enable a drastic increase in efficiency. Unlike other approaches, our failure classification is based on a completely functional model and on the definition of so-called failure capabilities. This overcomes the limitations of strictly hierarchic and time/value-based models. The new approach provides a framework to precisely specify common failure assumptions as well as very specialized scenarios-in particular so-called non-cooperative Byzantine failures.\",\"PeriodicalId\":162523,\"journal\":{\"name\":\"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDS.2000.839465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDS.2000.839465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fundamental failure model for fault-tolerant protocols
The application area of distributed systems determines the extent to which protocols must provide fault detection and/or fault tolerance. Highest dependability can not be obtained without the cost of a substantial overhead. In order to reduce the message number and the time consumption, protocols should be tailored best to application requirements and system properties. This paper presents a novel failure classification as an instrument to limit fault detection and tolerance features to a reasonable failure set. Evaluation of protocols shows that just exclusion of "exotic" failures, which are most unlikely to occur enable a drastic increase in efficiency. Unlike other approaches, our failure classification is based on a completely functional model and on the definition of so-called failure capabilities. This overcomes the limitations of strictly hierarchic and time/value-based models. The new approach provides a framework to precisely specify common failure assumptions as well as very specialized scenarios-in particular so-called non-cooperative Byzantine failures.