噪声函数的容量

François Simon
{"title":"噪声函数的容量","authors":"François Simon","doi":"10.1109/CIG.2010.5592779","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of the memoryless channel coding theorem to noisy functions, i.e. unreliable computing devices without internal states. It is shown that the concepts of equivocation and capacity can be defined for noisy computations in the simple case of memoryless noisy functions. Capacity is the upper bound of input rates allowing reliable computation, i.e. decodability of noisy outputs into expected outputs. The proposed concepts are generalizations of these known for channels: the capacity of a noisy implementation of a bijective function has the same expression as the capacity of a communication channel. A lemma similar to Feinstein's one is stated and demonstrated. A model of reliable computation of a function thanks to a noisy device is proposed. A coding theorem is stated and demonstrated.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Capacity of a noisy function\",\"authors\":\"François Simon\",\"doi\":\"10.1109/CIG.2010.5592779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extension of the memoryless channel coding theorem to noisy functions, i.e. unreliable computing devices without internal states. It is shown that the concepts of equivocation and capacity can be defined for noisy computations in the simple case of memoryless noisy functions. Capacity is the upper bound of input rates allowing reliable computation, i.e. decodability of noisy outputs into expected outputs. The proposed concepts are generalizations of these known for channels: the capacity of a noisy implementation of a bijective function has the same expression as the capacity of a communication channel. A lemma similar to Feinstein's one is stated and demonstrated. A model of reliable computation of a function thanks to a noisy device is proposed. A coding theorem is stated and demonstrated.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文将无记忆信道编码定理推广到噪声函数,即无内部状态的不可靠计算设备。结果表明,在无记忆噪声函数的简单情况下,对于噪声计算,可以定义模糊和容量的概念。容量是允许可靠计算的输入速率的上限,即将噪声输出解码为预期输出的能力。所提出的概念是这些已知信道的概括:双射函数的噪声实现的容量与通信信道的容量具有相同的表达式。一个引理类似于范斯坦的一个被陈述和证明。提出了一种考虑噪声器件的函数可靠计算模型。阐述并论证了一个编码定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity of a noisy function
This paper presents an extension of the memoryless channel coding theorem to noisy functions, i.e. unreliable computing devices without internal states. It is shown that the concepts of equivocation and capacity can be defined for noisy computations in the simple case of memoryless noisy functions. Capacity is the upper bound of input rates allowing reliable computation, i.e. decodability of noisy outputs into expected outputs. The proposed concepts are generalizations of these known for channels: the capacity of a noisy implementation of a bijective function has the same expression as the capacity of a communication channel. A lemma similar to Feinstein's one is stated and demonstrated. A model of reliable computation of a function thanks to a noisy device is proposed. A coding theorem is stated and demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信