电子产品评论中的意见词提取分析

Sint Sint Aung
{"title":"电子产品评论中的意见词提取分析","authors":"Sint Sint Aung","doi":"10.4018/ijsssp.2019010103","DOIUrl":null,"url":null,"abstract":"Online user reviews are increasingly becoming important for measuring the quality of different products and services. Sentiment classification or opinion mining involves studying and building a system that collects data from online and examines the opinions. Sentiment classification is also defined as opinion extraction as the computational research area of subjective information towards different products. Opinion mining or sentiment classification has attracted in many research areas because of its usefulness in natural language processing and other area of applications. Extracting opinion words and product features are also important tasks in opinion mining. In this work an unsupervised approach was proposed to extract opinions and product features without training examples. To obtain the dependency relation between the product aspects and opinions, this work used StanfordCoreNLP dependency parser. From these relations, rules are predified to extract product and opinions. The main advantage of this approach is that there is no need for training data and it has domain independence. Acoording to the experimental results, the modified algorithm gets better results than the double propagation algorithm.","PeriodicalId":135841,"journal":{"name":"Int. J. Syst. Softw. Secur. Prot.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis on Opinion Words Extraction in Electronic Product Reviews\",\"authors\":\"Sint Sint Aung\",\"doi\":\"10.4018/ijsssp.2019010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online user reviews are increasingly becoming important for measuring the quality of different products and services. Sentiment classification or opinion mining involves studying and building a system that collects data from online and examines the opinions. Sentiment classification is also defined as opinion extraction as the computational research area of subjective information towards different products. Opinion mining or sentiment classification has attracted in many research areas because of its usefulness in natural language processing and other area of applications. Extracting opinion words and product features are also important tasks in opinion mining. In this work an unsupervised approach was proposed to extract opinions and product features without training examples. To obtain the dependency relation between the product aspects and opinions, this work used StanfordCoreNLP dependency parser. From these relations, rules are predified to extract product and opinions. The main advantage of this approach is that there is no need for training data and it has domain independence. Acoording to the experimental results, the modified algorithm gets better results than the double propagation algorithm.\",\"PeriodicalId\":135841,\"journal\":{\"name\":\"Int. J. Syst. Softw. Secur. Prot.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Syst. Softw. Secur. Prot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsssp.2019010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Syst. Softw. Secur. Prot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsssp.2019010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在线用户评论对于衡量不同产品和服务的质量越来越重要。情感分类或意见挖掘涉及研究和建立一个系统,从网上收集数据并检查意见。情感分类也被定义为意见提取,作为对不同产品的主观信息的计算研究领域。观点挖掘或情感分类因其在自然语言处理和其他领域的应用而受到许多研究领域的关注。意见词和产品特征的提取也是意见挖掘的重要内容。在这项工作中,提出了一种无监督的方法来提取意见和产品特征,而不需要训练样例。为了获得产品方面和意见之间的依赖关系,本工作使用了StanfordCoreNLP依赖解析器。从这些关系中,预设规则,提取产品和意见。该方法的主要优点是不需要训练数据,并且具有领域独立性。实验结果表明,改进后的算法比双传播算法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on Opinion Words Extraction in Electronic Product Reviews
Online user reviews are increasingly becoming important for measuring the quality of different products and services. Sentiment classification or opinion mining involves studying and building a system that collects data from online and examines the opinions. Sentiment classification is also defined as opinion extraction as the computational research area of subjective information towards different products. Opinion mining or sentiment classification has attracted in many research areas because of its usefulness in natural language processing and other area of applications. Extracting opinion words and product features are also important tasks in opinion mining. In this work an unsupervised approach was proposed to extract opinions and product features without training examples. To obtain the dependency relation between the product aspects and opinions, this work used StanfordCoreNLP dependency parser. From these relations, rules are predified to extract product and opinions. The main advantage of this approach is that there is no need for training data and it has domain independence. Acoording to the experimental results, the modified algorithm gets better results than the double propagation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信