旋转机械故障诊断的RBF神经网络算法研究

Xiao-yue Wang, Zhong-kui Zhang
{"title":"旋转机械故障诊断的RBF神经网络算法研究","authors":"Xiao-yue Wang, Zhong-kui Zhang","doi":"10.1109/CASE.2009.118","DOIUrl":null,"url":null,"abstract":"In order to overcome the problems of slow rate of convergence, falling easily into local minimum, instability learning performance caused by initial value in BP algorithm, a new diagnosis method based on RBF neural networks was proposed. And the diagnosis method is applied to rotary machinery fault diagnosis. The result shows that the RBF network has very high learning convergence speed and better classifying performance. RBF network has good practicality in the field of equipment fault diagnosis.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research of RBF Neural Networks Algorithm to Fault Diagnosis of Rotary Machinery\",\"authors\":\"Xiao-yue Wang, Zhong-kui Zhang\",\"doi\":\"10.1109/CASE.2009.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the problems of slow rate of convergence, falling easily into local minimum, instability learning performance caused by initial value in BP algorithm, a new diagnosis method based on RBF neural networks was proposed. And the diagnosis method is applied to rotary machinery fault diagnosis. The result shows that the RBF network has very high learning convergence speed and better classifying performance. RBF network has good practicality in the field of equipment fault diagnosis.\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对BP算法收敛速度慢、易陷入局部极小值、初值导致学习性能不稳定等问题,提出了一种基于RBF神经网络的诊断方法。并将该诊断方法应用于旋转机械的故障诊断。结果表明,RBF网络具有很高的学习收敛速度和较好的分类性能。RBF网络在设备故障诊断领域具有良好的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of RBF Neural Networks Algorithm to Fault Diagnosis of Rotary Machinery
In order to overcome the problems of slow rate of convergence, falling easily into local minimum, instability learning performance caused by initial value in BP algorithm, a new diagnosis method based on RBF neural networks was proposed. And the diagnosis method is applied to rotary machinery fault diagnosis. The result shows that the RBF network has very high learning convergence speed and better classifying performance. RBF network has good practicality in the field of equipment fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信