{"title":"混合四自由度双臂凸轮锁臂的最优任务空间可操作性","authors":"K. G. Osgouie, A. Meghdari, S. Sohrabpour","doi":"10.1109/ISMA.2008.4648809","DOIUrl":null,"url":null,"abstract":"The dual-arm cam-lock robot is a reconfigurable manipulator formed by two parallel cooperative arms. Based on the application, these arms may loose some degrees of freedom by locking into each other. However, they are considered as redundant arms when operating without any locked joints/links. In this paper, a method is introduced to find the optimal configuration of this manipulator. The objective is to find the configuration in which maximum cooperative force is exerted to an object in a specific direction. The dynamics of the robot is parametrically formulated for different configurations, and by considering the geometrical constraints optimization is performed using fine-mesh and genetic algorithm methods.","PeriodicalId":350202,"journal":{"name":"2008 5th International Symposium on Mechatronics and Its Applications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal task-space manipulability of hybrid 4-DOF dual-arm CAM-lock manipulators\",\"authors\":\"K. G. Osgouie, A. Meghdari, S. Sohrabpour\",\"doi\":\"10.1109/ISMA.2008.4648809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dual-arm cam-lock robot is a reconfigurable manipulator formed by two parallel cooperative arms. Based on the application, these arms may loose some degrees of freedom by locking into each other. However, they are considered as redundant arms when operating without any locked joints/links. In this paper, a method is introduced to find the optimal configuration of this manipulator. The objective is to find the configuration in which maximum cooperative force is exerted to an object in a specific direction. The dynamics of the robot is parametrically formulated for different configurations, and by considering the geometrical constraints optimization is performed using fine-mesh and genetic algorithm methods.\",\"PeriodicalId\":350202,\"journal\":{\"name\":\"2008 5th International Symposium on Mechatronics and Its Applications\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th International Symposium on Mechatronics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMA.2008.4648809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th International Symposium on Mechatronics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMA.2008.4648809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal task-space manipulability of hybrid 4-DOF dual-arm CAM-lock manipulators
The dual-arm cam-lock robot is a reconfigurable manipulator formed by two parallel cooperative arms. Based on the application, these arms may loose some degrees of freedom by locking into each other. However, they are considered as redundant arms when operating without any locked joints/links. In this paper, a method is introduced to find the optimal configuration of this manipulator. The objective is to find the configuration in which maximum cooperative force is exerted to an object in a specific direction. The dynamics of the robot is parametrically formulated for different configurations, and by considering the geometrical constraints optimization is performed using fine-mesh and genetic algorithm methods.