基于电流体动力流的微样品片上传输和混合*

Min Wang, Zicheng Li, Wei Dai, Rui Liu, Sishen Yuan, Jun Liu
{"title":"基于电流体动力流的微样品片上传输和混合*","authors":"Min Wang, Zicheng Li, Wei Dai, Rui Liu, Sishen Yuan, Jun Liu","doi":"10.1109/MARSS55884.2022.9870510","DOIUrl":null,"url":null,"abstract":"Microfluidic devices and lab-on-a-chip systems are critically helpful in a number of biological and biomedical applications such as cell culture, drug delivery, and immunoassays. Micro-sample transportation, typically driven by hydraulic or pneumatic actuators, is one of the most elemental functions in the microfluidic systems. However, the existing sample transportation modules are difficult to control and observe because the existing of non-linearity and air bubbles. Moreover the closed channels has limited transparency and are inaccessible to microrobotic end-effectors. This study aims to develop a novel flow governing device for active sample transportation and assembly using electrohydrodynamic force. The dielectric liquid is filled in the microchannel as the transfer medium, and the electrodes are vertically integrated on the sidewalls to avoid blockage of the optical path. The dielectric liquid can generate a powerful flow when subjected to high DC voltage, thus providing an on-chip hydraulic power source. The proposed system is more compact than microdevices driven by external fluid sources such as syringe pumps. In addition, the vertically filled electrodes allows for a clearer view for observation and manipulation by other microrobotic tools. The micro-sample transportation experiments confirm that the sample can be transported bi-directionally with the highest transportation speed of 15.68 mm/s. The experiments also suggest that multiple samples could be transported and assembled by controlling the fluid flow in different channels.","PeriodicalId":144730,"journal":{"name":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Transportation and Mixing of Microsample Using Electrohydrodynamic Flow*\",\"authors\":\"Min Wang, Zicheng Li, Wei Dai, Rui Liu, Sishen Yuan, Jun Liu\",\"doi\":\"10.1109/MARSS55884.2022.9870510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic devices and lab-on-a-chip systems are critically helpful in a number of biological and biomedical applications such as cell culture, drug delivery, and immunoassays. Micro-sample transportation, typically driven by hydraulic or pneumatic actuators, is one of the most elemental functions in the microfluidic systems. However, the existing sample transportation modules are difficult to control and observe because the existing of non-linearity and air bubbles. Moreover the closed channels has limited transparency and are inaccessible to microrobotic end-effectors. This study aims to develop a novel flow governing device for active sample transportation and assembly using electrohydrodynamic force. The dielectric liquid is filled in the microchannel as the transfer medium, and the electrodes are vertically integrated on the sidewalls to avoid blockage of the optical path. The dielectric liquid can generate a powerful flow when subjected to high DC voltage, thus providing an on-chip hydraulic power source. The proposed system is more compact than microdevices driven by external fluid sources such as syringe pumps. In addition, the vertically filled electrodes allows for a clearer view for observation and manipulation by other microrobotic tools. The micro-sample transportation experiments confirm that the sample can be transported bi-directionally with the highest transportation speed of 15.68 mm/s. The experiments also suggest that multiple samples could be transported and assembled by controlling the fluid flow in different channels.\",\"PeriodicalId\":144730,\"journal\":{\"name\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS55884.2022.9870510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS55884.2022.9870510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微流控装置和芯片实验室系统在许多生物和生物医学应用中至关重要,如细胞培养,药物输送和免疫测定。微样品输送是微流体系统中最基本的功能之一,通常由液压或气动执行器驱动。然而,现有的样品传输模块由于存在非线性和气泡,难以控制和观察。此外,封闭通道的透明度有限,微机器人末端执行器无法进入。本研究旨在开发一种利用电液动力进行主动样品输送和组装的新型流量调节装置。在所述微通道中填充介电液体作为传递介质,电极垂直集成在所述侧壁上,避免光路阻塞。介质液体在高直流电压作用下产生强大的流动,从而提供片上液压电源。所提出的系统比由外部流体源(如注射泵)驱动的微型设备更紧凑。此外,垂直填充的电极可以更清晰地观察和操作其他微型机器人工具。微样输运实验证实,样品可以双向输运,最高输运速度为15.68 mm/s。实验还表明,通过控制不同通道的流体流动,可以实现多个样品的运输和组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Chip Transportation and Mixing of Microsample Using Electrohydrodynamic Flow*
Microfluidic devices and lab-on-a-chip systems are critically helpful in a number of biological and biomedical applications such as cell culture, drug delivery, and immunoassays. Micro-sample transportation, typically driven by hydraulic or pneumatic actuators, is one of the most elemental functions in the microfluidic systems. However, the existing sample transportation modules are difficult to control and observe because the existing of non-linearity and air bubbles. Moreover the closed channels has limited transparency and are inaccessible to microrobotic end-effectors. This study aims to develop a novel flow governing device for active sample transportation and assembly using electrohydrodynamic force. The dielectric liquid is filled in the microchannel as the transfer medium, and the electrodes are vertically integrated on the sidewalls to avoid blockage of the optical path. The dielectric liquid can generate a powerful flow when subjected to high DC voltage, thus providing an on-chip hydraulic power source. The proposed system is more compact than microdevices driven by external fluid sources such as syringe pumps. In addition, the vertically filled electrodes allows for a clearer view for observation and manipulation by other microrobotic tools. The micro-sample transportation experiments confirm that the sample can be transported bi-directionally with the highest transportation speed of 15.68 mm/s. The experiments also suggest that multiple samples could be transported and assembled by controlling the fluid flow in different channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信