基于课程学习的区域划分对象传输

Gyuho Eoh, T. Park
{"title":"基于课程学习的区域划分对象传输","authors":"Gyuho Eoh, T. Park","doi":"10.23919/ICCAS52745.2021.9649829","DOIUrl":null,"url":null,"abstract":"This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curriculum Learning-based Object Transportation using Region Partitioning\",\"authors\":\"Gyuho Eoh, T. Park\",\"doi\":\"10.23919/ICCAS52745.2021.9649829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于区域划分课程的深度强化学习(DRL)对象传输技术。在以往使用DRL算法进行物体运输的研究中,由于机器人在学习阶段的随机行为,导致机器人无法频繁获得成功经验,存在奖励稀疏的问题。为了解决稀疏奖励问题,我们根据物体和目标之间的距离划分姿势初始化区域,然后随着训练集的增加,机器人逐渐扩展划分的区域。使用这种方法,机器人有更多的成功机会,从而可以快速学习有效的物体运输方法。我们通过仿真来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curriculum Learning-based Object Transportation using Region Partitioning
This paper presents a deep reinforcement learning (DRL)-based object transportation technique using a region-partitioning curriculum. Previous studies on object transportation using DRL algorithms have suffered a sparse reward problem where a robot cannot gain success experiences frequently due to random actions at the learning stage. To solve the sparse reward problem, we partition pose-initialization regions based on the distance between an object and goal, then a robot gradually extends the partitioned regions as training episodes increase. The robot has more success opportunities using this method, and thus, it can learn effective object transportation methods quickly. We demonstrate simulations to verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信