用于基因组分析的BioPig性能评估和调整

Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng
{"title":"用于基因组分析的BioPig性能评估和调整","authors":"Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng","doi":"10.1145/2831244.2831252","DOIUrl":null,"url":null,"abstract":"In this study, we aim to optimize Hadoop parameters to improve the performance of BioPig on Amazon Web Service (AWS). BioPig is a toolkit for large-scale sequencing data analysis and is built on Hadoop and Pig that enables easy parallel programming and scaling to datasets of terabyte sizes. AWS is the most popular cloud-computing platform offered by Amazon. When running BioPig jobs on AWS, the default configuration parameters may lead to high computational costs. We select the k-mer counting as it is used in a large number of next generation sequence (NGS) data analysis tools. We tuned Hadoop parameters from five different perspectives based on a baseline configuration. We found tuning different Hadoop parameters led to various performance improvements. The overall job execution time of k-mer counting on BioPig was reduced by 50% using an optimized set of parameters. This paper documents our tuning experiments as a valuable reference for future Hadoop-based analytics applications on genomics datasets.","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance evaluation and tuning of BioPig for genomic analysis\",\"authors\":\"Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng\",\"doi\":\"10.1145/2831244.2831252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we aim to optimize Hadoop parameters to improve the performance of BioPig on Amazon Web Service (AWS). BioPig is a toolkit for large-scale sequencing data analysis and is built on Hadoop and Pig that enables easy parallel programming and scaling to datasets of terabyte sizes. AWS is the most popular cloud-computing platform offered by Amazon. When running BioPig jobs on AWS, the default configuration parameters may lead to high computational costs. We select the k-mer counting as it is used in a large number of next generation sequence (NGS) data analysis tools. We tuned Hadoop parameters from five different perspectives based on a baseline configuration. We found tuning different Hadoop parameters led to various performance improvements. The overall job execution time of k-mer counting on BioPig was reduced by 50% using an optimized set of parameters. This paper documents our tuning experiments as a valuable reference for future Hadoop-based analytics applications on genomics datasets.\",\"PeriodicalId\":166804,\"journal\":{\"name\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Design and Implementation of Symbolic Computation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2831244.2831252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2831244.2831252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们的目标是优化Hadoop参数,以提高BioPig在亚马逊网络服务(AWS)上的性能。BioPig是一个用于大规模测序数据分析的工具包,它建立在Hadoop和Pig的基础上,可以轻松地并行编程并扩展到tb大小的数据集。AWS是亚马逊提供的最受欢迎的云计算平台。当在AWS上运行BioPig作业时,默认配置参数可能会导致较高的计算成本。我们选择k-mer计数,因为它在大量的下一代序列(NGS)数据分析工具中使用。我们基于基线配置从五个不同的角度调优Hadoop参数。我们发现,调整不同的Hadoop参数会带来各种性能改进。使用一组优化的参数,BioPig上k-mer计数的总体作业执行时间减少了50%。本文记录了我们的调优实验,为未来基于hadoop的基因组数据集分析应用提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation and tuning of BioPig for genomic analysis
In this study, we aim to optimize Hadoop parameters to improve the performance of BioPig on Amazon Web Service (AWS). BioPig is a toolkit for large-scale sequencing data analysis and is built on Hadoop and Pig that enables easy parallel programming and scaling to datasets of terabyte sizes. AWS is the most popular cloud-computing platform offered by Amazon. When running BioPig jobs on AWS, the default configuration parameters may lead to high computational costs. We select the k-mer counting as it is used in a large number of next generation sequence (NGS) data analysis tools. We tuned Hadoop parameters from five different perspectives based on a baseline configuration. We found tuning different Hadoop parameters led to various performance improvements. The overall job execution time of k-mer counting on BioPig was reduced by 50% using an optimized set of parameters. This paper documents our tuning experiments as a valuable reference for future Hadoop-based analytics applications on genomics datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信