基于神经模糊的股票市场预测系统

M. Gunasekaran, S. Anitha, S. KaviPriya
{"title":"基于神经模糊的股票市场预测系统","authors":"M. Gunasekaran, S. Anitha, S. KaviPriya","doi":"10.2139/ssrn.2335293","DOIUrl":null,"url":null,"abstract":"Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neuro Fuzzy Based Stock Market Prediction System\",\"authors\":\"M. Gunasekaran, S. Anitha, S. KaviPriya\",\"doi\":\"10.2139/ssrn.2335293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2335293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2335293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络用于预测已经有好几年了。通常会出现黑箱方法的问题,即在训练神经网络解决特定问题后,几乎不可能分析它们的工作原理。模糊神经网络允许在神经网络中添加规则。这避免了黑盒问题。此外,在不同的情况下,它们应该具有更高的预测精度。将人工神经网络、遗传算法和模糊逻辑应用于股市预测是近年来备受关注的问题,它能较好地将非定量因素与股市表现相关联。然而,由于股票市场表现的无记忆性,这些方法的表现并不令人满意。本文提出了一种混合模糊逻辑和遗传算法的基于数据压缩的投资组合预测模型。在该模型中,首先通过遗传算法对可量化的股票微观经济数据进行优化,生成与股票市场表现相关的最有效的微观经济数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro Fuzzy Based Stock Market Prediction System
Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信