{"title":"基于神经模糊的股票市场预测系统","authors":"M. Gunasekaran, S. Anitha, S. KaviPriya","doi":"10.2139/ssrn.2335293","DOIUrl":null,"url":null,"abstract":"Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neuro Fuzzy Based Stock Market Prediction System\",\"authors\":\"M. Gunasekaran, S. Anitha, S. KaviPriya\",\"doi\":\"10.2139/ssrn.2335293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2335293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2335293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural networks have been used for forecasting purposes for some years now. Often arises the problem of a black-box approach, i.e. after having trained neural networks to a particular problem, it is almost impossible to analyze them for how they work. Fuzzy Neuronal Networks allow adding rules to neural networks. This avoids the black-box-problem. Additionally they are supposed to have a higher prediction precision in unlike situations. Applying artificial neural network, genetic algorithm and fuzzy logic for the stock market prediction has attracted much attention recently, which has better correlated the non-quantitative factors with the stock market performance. However these approaches perform less satisfactorily due to the memoryless nature of the stock market performance. In this paper, we propose a data compression-based portfolio prediction model hybridized with the fuzzy logic and genetic algorithm. In the model, the quantifiable microeconomic stock data are first optimized through the genetic algorithms to generate the most effective microeconomic data in relation to the stock market performance.