使用AdaBoost和SIFT对教学视频进行视觉内容总结

Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour
{"title":"使用AdaBoost和SIFT对教学视频进行视觉内容总结","authors":"Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour","doi":"10.1504/ijkesdp.2019.10025587","DOIUrl":null,"url":null,"abstract":"Research contributions in video retrieval field are rising to propose solutions for automatic understanding and retrieval of video content. The aim is to make the user able to retrieve specific video sequences in a large database, based on semantic information. In this paper, we process a special case of videos, instructional videos, where text presents very rich semantic information for understanding video content. Indeed, lecture videos are the source of information used in learning systems by educators and students for archiving and sharing knowledge. However, users usually have difficulties to access accurate parts in instructional videos. In our paper, we propose a method to summarise the visual content in instructional videos. For that, first, we segment the video into shots based on SIFT. Then, key frames which are rich in text and figures are extracted from each shot based on entropy measurement. These keyframes are classified using AdaBoost to eliminate non-text frames. The text content in the lecture video summary can be detected and recognised to identify keywords for indexing and classification.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual content summarisation for instructional videos using AdaBoost and SIFT\",\"authors\":\"Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour\",\"doi\":\"10.1504/ijkesdp.2019.10025587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research contributions in video retrieval field are rising to propose solutions for automatic understanding and retrieval of video content. The aim is to make the user able to retrieve specific video sequences in a large database, based on semantic information. In this paper, we process a special case of videos, instructional videos, where text presents very rich semantic information for understanding video content. Indeed, lecture videos are the source of information used in learning systems by educators and students for archiving and sharing knowledge. However, users usually have difficulties to access accurate parts in instructional videos. In our paper, we propose a method to summarise the visual content in instructional videos. For that, first, we segment the video into shots based on SIFT. Then, key frames which are rich in text and figures are extracted from each shot based on entropy measurement. These keyframes are classified using AdaBoost to eliminate non-text frames. The text content in the lecture video summary can be detected and recognised to identify keywords for indexing and classification.\",\"PeriodicalId\":347123,\"journal\":{\"name\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Eng. Soft Data Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijkesdp.2019.10025587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijkesdp.2019.10025587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频检索领域的研究成果越来越多,为视频内容的自动理解和检索提出了解决方案。其目的是使用户能够在基于语义信息的大型数据库中检索特定的视频序列。在本文中,我们处理了一个特殊的视频案例,教学视频,其中文本提供了非常丰富的语义信息来理解视频内容。事实上,课堂视频是教育工作者和学生在学习系统中用于存档和共享知识的信息来源。然而,用户通常难以访问教学视频中的准确部分。在本文中,我们提出了一种对教学视频中的视觉内容进行总结的方法。为此,首先,我们基于SIFT将视频分割成多个镜头。然后,基于熵值测量,从每个镜头中提取富含文本和图形的关键帧;使用AdaBoost对这些关键帧进行分类,以消除非文本帧。可以对讲座视频摘要中的文本内容进行检测和识别,从而识别出索引和分类的关键字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual content summarisation for instructional videos using AdaBoost and SIFT
Research contributions in video retrieval field are rising to propose solutions for automatic understanding and retrieval of video content. The aim is to make the user able to retrieve specific video sequences in a large database, based on semantic information. In this paper, we process a special case of videos, instructional videos, where text presents very rich semantic information for understanding video content. Indeed, lecture videos are the source of information used in learning systems by educators and students for archiving and sharing knowledge. However, users usually have difficulties to access accurate parts in instructional videos. In our paper, we propose a method to summarise the visual content in instructional videos. For that, first, we segment the video into shots based on SIFT. Then, key frames which are rich in text and figures are extracted from each shot based on entropy measurement. These keyframes are classified using AdaBoost to eliminate non-text frames. The text content in the lecture video summary can be detected and recognised to identify keywords for indexing and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信