用混合频率数据预测商品价格:基于ols的广义ADL方法

Yu‐chin Chen, Wen-Jen Tsay
{"title":"用混合频率数据预测商品价格:基于ols的广义ADL方法","authors":"Yu‐chin Chen, Wen-Jen Tsay","doi":"10.2139/ssrn.1782214","DOIUrl":null,"url":null,"abstract":"This paper presents a generalized autoregressive distributed lag (GADL) model for conducting regression estimations that involve mixed-frequency data. As an example, we show that daily asset market information - currency and equity mar- ket movements - can produce forecasts of quarterly commodity price changes that are superior to those in the previous research. Following the traditional ADL lit- erature, our estimation strategy relies on a Vandermonde matrix to parameterize the weighting functions for higher-frequency observations. Accordingly, infer- ences can be obtained using ordinary least squares principles without Kalman fi ltering, non-linear optimizations, or additional restrictions on the parameters. Our fi ndings provide an easy-to-use method for conducting mixed data-sampling analysis as well as for forecasting world commodity price movements.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Forecasting Commodity Prices with Mixed-Frequency Data: An OLS-Based Generalized ADL Approach\",\"authors\":\"Yu‐chin Chen, Wen-Jen Tsay\",\"doi\":\"10.2139/ssrn.1782214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a generalized autoregressive distributed lag (GADL) model for conducting regression estimations that involve mixed-frequency data. As an example, we show that daily asset market information - currency and equity mar- ket movements - can produce forecasts of quarterly commodity price changes that are superior to those in the previous research. Following the traditional ADL lit- erature, our estimation strategy relies on a Vandermonde matrix to parameterize the weighting functions for higher-frequency observations. Accordingly, infer- ences can be obtained using ordinary least squares principles without Kalman fi ltering, non-linear optimizations, or additional restrictions on the parameters. Our fi ndings provide an easy-to-use method for conducting mixed data-sampling analysis as well as for forecasting world commodity price movements.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1782214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1782214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种广义自回归分布滞后(GADL)模型,用于混合频率数据的回归估计。作为一个例子,我们展示了每日的资产市场信息——货币和股票市场的运动——可以产生季度商品价格变化的预测,比以前的研究要好。根据传统的ADL文献,我们的估计策略依赖于Vandermonde矩阵来参数化高频观测的权重函数。因此,可以使用普通最小二乘原理获得推论,而不需要卡尔曼滤波、非线性优化或对参数的附加限制。我们的研究结果为进行混合数据抽样分析以及预测世界商品价格走势提供了一种易于使用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Commodity Prices with Mixed-Frequency Data: An OLS-Based Generalized ADL Approach
This paper presents a generalized autoregressive distributed lag (GADL) model for conducting regression estimations that involve mixed-frequency data. As an example, we show that daily asset market information - currency and equity mar- ket movements - can produce forecasts of quarterly commodity price changes that are superior to those in the previous research. Following the traditional ADL lit- erature, our estimation strategy relies on a Vandermonde matrix to parameterize the weighting functions for higher-frequency observations. Accordingly, infer- ences can be obtained using ordinary least squares principles without Kalman fi ltering, non-linear optimizations, or additional restrictions on the parameters. Our fi ndings provide an easy-to-use method for conducting mixed data-sampling analysis as well as for forecasting world commodity price movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信