{"title":"具有记忆的非线性系统神经网络建模与辨识的统计分析","authors":"M. Ibnkahla","doi":"10.1109/ISSPA.2001.949841","DOIUrl":null,"url":null,"abstract":"The paper presents a statistical analysis of neural network modeling and identification of nonlinear systems with memory. The nonlinear system model is comprised of a discrete-time linear filter H followed by a zero-memory nonlinear function g(.). The system is corrupted by input and output independent Gaussian noise. The neural network is used to identify and model the unknown linear filter H and the unknown nonlinearity g(.). The network architecture is composed of a linear adaptive filter and a two-layer nonlinear neural network (with an arbitrary number of neurons). The network is trained using the backpropagation algorithm. The paper studies the MSE surface and the stationary points of the adaptive system. Recursions are derived for the mean transient behavior of the adaptive filter coefficients and the neural network weights for slow learning. It is shown that the adaptive filter converges to a scaled version of the unknown filter H, and that the nonlinear neural network converges to an approximation of the unknown nonlinearity. Computer simulations show good agreement between theory and experimental results.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Statistical analysis of neural network modeling and identification of nonlinear systems with memory\",\"authors\":\"M. Ibnkahla\",\"doi\":\"10.1109/ISSPA.2001.949841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a statistical analysis of neural network modeling and identification of nonlinear systems with memory. The nonlinear system model is comprised of a discrete-time linear filter H followed by a zero-memory nonlinear function g(.). The system is corrupted by input and output independent Gaussian noise. The neural network is used to identify and model the unknown linear filter H and the unknown nonlinearity g(.). The network architecture is composed of a linear adaptive filter and a two-layer nonlinear neural network (with an arbitrary number of neurons). The network is trained using the backpropagation algorithm. The paper studies the MSE surface and the stationary points of the adaptive system. Recursions are derived for the mean transient behavior of the adaptive filter coefficients and the neural network weights for slow learning. It is shown that the adaptive filter converges to a scaled version of the unknown filter H, and that the nonlinear neural network converges to an approximation of the unknown nonlinearity. Computer simulations show good agreement between theory and experimental results.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.949841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.949841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical analysis of neural network modeling and identification of nonlinear systems with memory
The paper presents a statistical analysis of neural network modeling and identification of nonlinear systems with memory. The nonlinear system model is comprised of a discrete-time linear filter H followed by a zero-memory nonlinear function g(.). The system is corrupted by input and output independent Gaussian noise. The neural network is used to identify and model the unknown linear filter H and the unknown nonlinearity g(.). The network architecture is composed of a linear adaptive filter and a two-layer nonlinear neural network (with an arbitrary number of neurons). The network is trained using the backpropagation algorithm. The paper studies the MSE surface and the stationary points of the adaptive system. Recursions are derived for the mean transient behavior of the adaptive filter coefficients and the neural network weights for slow learning. It is shown that the adaptive filter converges to a scaled version of the unknown filter H, and that the nonlinear neural network converges to an approximation of the unknown nonlinearity. Computer simulations show good agreement between theory and experimental results.