基于蚁群算法的发电机燃料成本优化

I. Suryawati, Sagita Rochman
{"title":"基于蚁群算法的发电机燃料成本优化","authors":"I. Suryawati, Sagita Rochman","doi":"10.36456/best.vol1.no1.1988","DOIUrl":null,"url":null,"abstract":"Ant Colony Algorithm (ACA) is an optimization algorithm was inspired by ant behavior when searching for the shortest distance from the food center. In this study, ACA is used for power plants with a fuel cost fitness function. ACA can search destinations faster than conventional methods such as Lagrange. In this study ACA used the optimal power flow of six power plants in the Java Bali 500 KV system, the optimization results reduced fuel costs by 23% and Lagrange 17.4% compared to real conditions. \n ","PeriodicalId":120771,"journal":{"name":"BEST : Journal of Applied Electrical, Science, & Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GENERATOR FUEL COST OPTIMIZATION USING ANT COLONY ALGORITHM\",\"authors\":\"I. Suryawati, Sagita Rochman\",\"doi\":\"10.36456/best.vol1.no1.1988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant Colony Algorithm (ACA) is an optimization algorithm was inspired by ant behavior when searching for the shortest distance from the food center. In this study, ACA is used for power plants with a fuel cost fitness function. ACA can search destinations faster than conventional methods such as Lagrange. In this study ACA used the optimal power flow of six power plants in the Java Bali 500 KV system, the optimization results reduced fuel costs by 23% and Lagrange 17.4% compared to real conditions. \\n \",\"PeriodicalId\":120771,\"journal\":{\"name\":\"BEST : Journal of Applied Electrical, Science, & Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BEST : Journal of Applied Electrical, Science, & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36456/best.vol1.no1.1988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BEST : Journal of Applied Electrical, Science, & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36456/best.vol1.no1.1988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蚁群算法(Ant Colony Algorithm, ACA)是一种受蚂蚁行为启发,寻找离食物中心最短距离的优化算法。本研究将ACA用于具有燃料成本适应度函数的发电厂。ACA可以比拉格朗日等传统方法更快地搜索目的地。在本研究中,ACA采用爪哇巴厘岛500 KV系统中6个电厂的最优潮流,优化结果与实际情况相比,燃料成本降低23%,拉格朗日降低17.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENERATOR FUEL COST OPTIMIZATION USING ANT COLONY ALGORITHM
Ant Colony Algorithm (ACA) is an optimization algorithm was inspired by ant behavior when searching for the shortest distance from the food center. In this study, ACA is used for power plants with a fuel cost fitness function. ACA can search destinations faster than conventional methods such as Lagrange. In this study ACA used the optimal power flow of six power plants in the Java Bali 500 KV system, the optimization results reduced fuel costs by 23% and Lagrange 17.4% compared to real conditions.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信