面向扫描电镜图像中纳米颗粒自动识别的图像处理

Nicolene Botha, G. Wessels, N. Botha, Beatrice van Eden
{"title":"面向扫描电镜图像中纳米颗粒自动识别的图像处理","authors":"Nicolene Botha, G. Wessels, N. Botha, Beatrice van Eden","doi":"10.1109/ROBOMECH.2019.8704799","DOIUrl":null,"url":null,"abstract":"SEM images are crucial in the characterisation of material properties. These images can be very hard to interpret without any prior knowledge of the material. This paper discusses a pre-processing method for assisting convolutional Neural Networks in identifying the presence of nanoparticles in composite SEM images. The pre-processing method is developed using a synthetic SEM image.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image processing towards the automated identification of nanoparticles in SEM images\",\"authors\":\"Nicolene Botha, G. Wessels, N. Botha, Beatrice van Eden\",\"doi\":\"10.1109/ROBOMECH.2019.8704799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SEM images are crucial in the characterisation of material properties. These images can be very hard to interpret without any prior knowledge of the material. This paper discusses a pre-processing method for assisting convolutional Neural Networks in identifying the presence of nanoparticles in composite SEM images. The pre-processing method is developed using a synthetic SEM image.\",\"PeriodicalId\":344332,\"journal\":{\"name\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOMECH.2019.8704799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

扫描电镜图像在表征材料性能方面是至关重要的。如果没有对材料的任何先验知识,这些图像可能很难解释。本文讨论了一种帮助卷积神经网络识别复合扫描电镜图像中纳米颗粒存在的预处理方法。利用合成的扫描电镜图像开发了预处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image processing towards the automated identification of nanoparticles in SEM images
SEM images are crucial in the characterisation of material properties. These images can be very hard to interpret without any prior knowledge of the material. This paper discusses a pre-processing method for assisting convolutional Neural Networks in identifying the presence of nanoparticles in composite SEM images. The pre-processing method is developed using a synthetic SEM image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信