基于普适传感器网络的信号感知与调制分类

W. Su
{"title":"基于普适传感器网络的信号感知与调制分类","authors":"W. Su","doi":"10.1109/PerComW.2013.6529538","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of asynchronous low-cost sensors in distributed locations for sensing and classifying weak wireless signals. This weak signal may not be identified by using a single sensor alone, but can be detected and classified by fusing multiple weak signals collected by sensor networks. The asynchronous signal copies have unwanted offsets in time, frequency, and phase due to the diversities in local oscillators and unknown communication channels. This work proposes a post-synchronization method to estimate and compensate for offsets in the fusion process without adjusting the sensor parameters. The properly combined signal from the distributed sensors achieves a higher processing gain for reliable signal exploitation.","PeriodicalId":101502,"journal":{"name":"2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Signal sensing and modulation classification using pervasive sensor networks\",\"authors\":\"W. Su\",\"doi\":\"10.1109/PerComW.2013.6529538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of asynchronous low-cost sensors in distributed locations for sensing and classifying weak wireless signals. This weak signal may not be identified by using a single sensor alone, but can be detected and classified by fusing multiple weak signals collected by sensor networks. The asynchronous signal copies have unwanted offsets in time, frequency, and phase due to the diversities in local oscillators and unknown communication channels. This work proposes a post-synchronization method to estimate and compensate for offsets in the fusion process without adjusting the sensor parameters. The properly combined signal from the distributed sensors achieves a higher processing gain for reliable signal exploitation.\",\"PeriodicalId\":101502,\"journal\":{\"name\":\"2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PerComW.2013.6529538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PerComW.2013.6529538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了在分布式位置使用异步低成本传感器对微弱无线信号进行感知和分类。这种弱信号可能无法通过单独使用单个传感器来识别,但可以通过融合传感器网络收集的多个弱信号来检测和分类。由于本地振荡器和未知通信信道的多样性,异步信号副本在时间、频率和相位上有不必要的偏移。本文提出了一种无需调整传感器参数即可估计和补偿融合过程中的偏移量的后同步方法。对分布式传感器的信号进行适当的组合,可以获得较高的处理增益,从而实现可靠的信号开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal sensing and modulation classification using pervasive sensor networks
This paper discusses the use of asynchronous low-cost sensors in distributed locations for sensing and classifying weak wireless signals. This weak signal may not be identified by using a single sensor alone, but can be detected and classified by fusing multiple weak signals collected by sensor networks. The asynchronous signal copies have unwanted offsets in time, frequency, and phase due to the diversities in local oscillators and unknown communication channels. This work proposes a post-synchronization method to estimate and compensate for offsets in the fusion process without adjusting the sensor parameters. The properly combined signal from the distributed sensors achieves a higher processing gain for reliable signal exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信